期刊文献+
共找到34,317篇文章
< 1 2 250 >
每页显示 20 50 100
Parallel Image Processing: Taking Grayscale Conversion Using OpenMP as an Example 被引量:1
1
作者 Bayan AlHumaidan Shahad Alghofaily +2 位作者 Maitha Al Qhahtani Sara Oudah Naya Nagy 《Journal of Computer and Communications》 2024年第2期1-10,共10页
In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularl... In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks. 展开更多
关键词 Parallel Computing image processing OPENMP Parallel Programming High Performance Computing GPU (Graphic processing Unit)
在线阅读 下载PDF
A Comprehensive Image Processing Framework for Early Diagnosis of Diabetic Retinopathy
2
作者 Kusum Yadav Yasser Alharbi +6 位作者 Eissa Jaber Alreshidi Abdulrahman Alreshidi Anuj Kumar Jain Anurag Jain Kamal Kumar Sachin Sharma Brij BGupta 《Computers, Materials & Continua》 SCIE EI 2024年第11期2665-2683,共19页
In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis... In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis of medical images is essential for doctors,as manual investigation often leads to inter-observer variability.This research aims to enhance healthcare by enabling the early detection of diabetic retinopathy through an efficient image processing framework.The proposed hybridized method combines Modified Inertia Weight Particle Swarm Optimization(MIWPSO)and Fuzzy C-Means clustering(FCM)algorithms.Traditional FCM does not incorporate spatial neighborhood features,making it highly sensitive to noise,which significantly affects segmentation output.Our method incorporates a modified FCM that includes spatial functions in the fuzzy membership matrix to eliminate noise.The results demonstrate that the proposed FCM-MIWPSO method achieves highly precise and accurate medical image segmentation.Furthermore,segmented images are classified as benign or malignant using the Decision Tree-Based Temporal Association Rule(DT-TAR)Algorithm.Comparative analysis with existing state-of-the-art models indicates that the proposed FCM-MIWPSO segmentation technique achieves a remarkable accuracy of 98.42%on the dataset,highlighting its significant impact on improving diagnostic capabilities in medical imaging. 展开更多
关键词 image processing biological data PSO Fuzzy C-Means(FCM)
在线阅读 下载PDF
Machine Learning-based Identification of Contaminated Images in Light Curve Data Preprocessing
3
作者 Hui Li Rong-Wang Li +1 位作者 Peng Shu Yu-Qiang Li 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第4期287-295,共9页
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri... Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results. 展开更多
关键词 techniques:image processing methods:data analysis light pollution
在线阅读 下载PDF
Simulation of Fracture Process of Lightweight Aggregate Concrete Based on Digital Image Processing Technology
4
作者 Safwan Al-sayed Xi Wang Yijiang Peng 《Computers, Materials & Continua》 SCIE EI 2024年第6期4169-4195,共27页
The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is a... The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis. 展开更多
关键词 Digital image processing lightweight aggregate concrete mesoscopic model numerical simulation fracture analysis bending beams
在线阅读 下载PDF
Automated Angle Detection for Industrial Production Lines Using Combined Image Processing Techniques
5
作者 Pawat Chunhachatrachai Chyi-Yeu Lin 《Intelligent Automation & Soft Computing》 2024年第4期599-618,共20页
Angle detection is a crucial aspect of industrial automation,ensuring precise alignment and orientation ofcomponents in manufacturing processes.Despite the widespread application of computer vision in industrialsettin... Angle detection is a crucial aspect of industrial automation,ensuring precise alignment and orientation ofcomponents in manufacturing processes.Despite the widespread application of computer vision in industrialsettings,angle detection remains an underexplored domain,with limited integration into production lines.Thispaper addresses the need for automated angle detection in industrial environments by presenting a methodologythat eliminates training time and higher computation cost on Graphics Processing Unit(GPU)from machinelearning in computer vision(e.g.,Convolutional Neural Networks(CNN)).Our approach leverages advanced imageprocessing techniques and a strategic combination of algorithms,including contour selection,circle regression,polar warp transformation,and outlier detection,to provide an adaptive solution for angle detection.By configuringthe algorithm with a diverse dataset and evaluating its performance across various objects,we demonstrate itsefficacy in achieving reliable results,with an average error of only 0.5 degrees.Notably,this error margin is 3.274times lower than the acceptable threshold.Our study highlights the importance of accurate angle detection inindustrial settings and showcases the reliability of our algorithm in accurately determining angles,thus contributingto improved manufacturing processes. 展开更多
关键词 Angle detection image processing algorithm computer vision machine vision industrial automation
在线阅读 下载PDF
Research on Image Preprocessing Algorithm for Rail Surface Recognition
6
作者 Jihong Zuo Lili Liu +1 位作者 Chuanyin Yang Yufeng Tang 《Open Journal of Applied Sciences》 2024年第10期2801-2808,共8页
The rail surface status image is affected by the noise in the shooting environment and contains a large amount of interference information, which increases the difficulty of rail surface status identification. In orde... The rail surface status image is affected by the noise in the shooting environment and contains a large amount of interference information, which increases the difficulty of rail surface status identification. In order to solve this problem, a preprocessing method for the rail surface state image is proposed. The preprocessing process mainly includes image graying, image denoising, image geometric correction, image extraction, data amplification, and finally building the rail surface image database. The experimental results show that this method can efficiently complete image processing, facilitate feature extraction of rail surface status images, and improve rail surface status recognition accuracy. 展开更多
关键词 image processing image Graying image Denoising image Database
在线阅读 下载PDF
Parallel Technologies with Image Processing Using Inverse Filter
7
作者 Rahaf Alsharhan Areej Muheef +2 位作者 Yasmin Al Ibrahim Afnan Rayyani Yasir Alguwaifli 《Journal of Computer and Communications》 2024年第1期110-119,共10页
Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights t... Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights the importance of addressing race conditions in parallel image processing, specifically focusing on color inverse filtering using OpenMP. We considered three solutions to solve race conditions, each with distinct characteristics: #pragma omp atomic: Protects individual memory operations for fine-grained control. #pragma omp critical: Protects entire code blocks for exclusive access. #pragma omp parallel sections reduction: Employs a reduction clause for safe aggregation of values across threads. Our findings show that the produced images were unaffected by race condition. However, it becomes evident that solving the race conditions in the code makes it significantly faster, especially when it is executed on multiple cores. 展开更多
关键词 PARALLEL PARALLELIZATION image processing Inverse Filtering OPENMP Race Conditions
在线阅读 下载PDF
Image processing of weld pool and keyhole in Nd:YAG laser welding of stainless steel based on visual sensing 被引量:3
8
作者 高进强 秦国梁 +3 位作者 杨家林 何建国 张涛 武传松 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期423-428,共6页
In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the qualit... In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the quality information. Abundant weld quality information is contained in weld pool and keyhole. Aiming at Nd:YAG laser welding of stainless steel, a coaxial visual sensing system was constructed. The images of weld pool and keyhole were obtained. Based on the gray character of weld pool and keyhole in images, an image processing algorithm was designed. The search start point and search criteria of weld pool and keyhole edge were determined respectively. 展开更多
关键词 laser welding KEYHOLE weld pool EDGE image processing algorithm
在线阅读 下载PDF
RESEARCH ON SATELLITE IMAGE PROCESSING AND RECOGNITION WITH PARALLEL ALGORITHM 被引量:1
9
作者 刘正光 郭爱民 +1 位作者 程彦 刘勇 《Transactions of Tianjin University》 EI CAS 1999年第2期73-77,共5页
Using the method of mathematical morphology,this paper fulfills filtration,segmentation and extraction of morphological features of the satellite cloud image.It also gives out the relative algorithms,which is realized... Using the method of mathematical morphology,this paper fulfills filtration,segmentation and extraction of morphological features of the satellite cloud image.It also gives out the relative algorithms,which is realized by parallel C programming based on Transputer networks.It has been successfully used to process the typhoon and the low tornado cloud image.And it will be used in weather forecast. 展开更多
关键词 satellite cloud image extraction of morphological features mathematical morphology parallel processing
在线阅读 下载PDF
Detection of Oscillations in Process Control Loops From Visual Image Space Using Deep Convolutional Networks 被引量:2
10
作者 Tao Wang Qiming Chen +3 位作者 Xun Lang Lei Xie Peng Li Hongye Su 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期982-995,共14页
Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have b... Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers. 展开更多
关键词 Convolutional neural networks(CNNs) deep learning image processing oscillation detection process industries
在线阅读 下载PDF
Two-Dimensional Perovskite Single Crystals for High-Performance X-ray Imaging and Exploring MeV X-ray Detection 被引量:1
11
作者 Xieming Xu Yiheng Wu +5 位作者 Yi Zhang Xiaohui Li Fang Wang Xiaoming Jiang Shaofan Wu Shuaihua Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期139-146,共8页
Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,bu... Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,but they are mostly used in low-energy(≤130 keV)regions.Direct detection of MeV X-rays,which ensure thorough penetration of the thick shell walls of containers,trucks,and aircraft,is also highly desired in practical industrial applications.Unfortunately,scintillation semiconductors for high-energy X-ray detection are currently scarce.Here,This paper reports a 2D(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single crystal with outstanding sensitivity and stability toward X-ray radiation that provides an ultra-wide detectable X-ray range of between 8.20 nGy_(air)s^(-1)(50 keV)and 15.24 mGy_(air)s^(-1)(9 MeV).The(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single-crystal detector with a vertical structure is used for high-performance X-ray imaging,delivering a good spatial resolution of 4.3 Ip mm^(-1)in a plane-scan imaging system.Low ionic migration in the 2D perovskite enables the vertical device to be operated with hundreds of keV to MeV X-ray radiation at high bias voltages,leading to a sensitivity of 46.90μC Gy_(air)-1 cm^(-2)(-1.16 Vμm^(-1))with 9 MeV X-ray radiation,demonstrating that 2D perovskites have enormous potential for high-energy industrial applications. 展开更多
关键词 MeV X-ray detection single-crystal X-ray detectors two-dimensional perovskites X-ray imaging
在线阅读 下载PDF
An Example of Machine Vision Applied in Printing Quality Checking——Research on the Checking of Printing Quality by Image Processing 被引量:5
12
作者 唐万有 王文凤 《微计算机信息》 北大核心 2008年第6期45-47,共3页
The traditional printing checking method always uses printing control strips,but the results are not very well in repeatability and stability. In this paper,the checking methods for printing quality basing on image ar... The traditional printing checking method always uses printing control strips,but the results are not very well in repeatability and stability. In this paper,the checking methods for printing quality basing on image are taken as research objects. On the base of the traditional checking methods of printing quality,combining the method and theory of digital image processing with printing theory in the new domain of image quality checking,it constitute the checking system of printing quality by image processing,and expound the theory design and the model of this system. This is an application of machine vision. It uses the high resolution industrial CCD(Charge Coupled Device) colorful camera. It can display the real-time photographs on the monitor,and input the video signal to the image gathering card,and then the image data transmits through the computer PCI bus to the memory. At the same time,the system carries on processing and data analysis. This method is proved by experiments. The experiments are mainly about the data conversion of image and ink limit show of printing. 展开更多
关键词 机器视觉 印刷质量检测 图像处理 数据转换 墨量显示
在线阅读 下载PDF
Novel Feature Extractor Framework in Conjunction with Supervised Three Class-XGBoost Algorithm for Osteosarcoma Detection from Whole Slide Medical Histopathology Images
13
作者 Tanzila Saba Muhammad Mujahid +2 位作者 Shaha Al-Otaibi Noor Ayesha Amjad Rehman Khan 《Computers, Materials & Continua》 2025年第2期3337-3353,共17页
Osteosarcomas are malignant neoplasms derived from undifferentiated osteogenic mesenchymal cells. It causes severe and permanent damage to human tissue and has a high mortality rate. The condition has the capacity to ... Osteosarcomas are malignant neoplasms derived from undifferentiated osteogenic mesenchymal cells. It causes severe and permanent damage to human tissue and has a high mortality rate. The condition has the capacity to occur in any bone;however, it often impacts long bones like the arms and legs. Prompt identification and prompt intervention are essential for augmenting patient longevity. However, the intricate composition and erratic placement of osteosarcoma provide difficulties for clinicians in accurately determining the scope of the afflicted area. There is a pressing requirement for developing an algorithm that can automatically detect bone tumors with tremendous accuracy. Therefore, in this study, we proposed a novel feature extractor framework associated with a supervised three-class XGBoost algorithm for the detection of osteosarcoma in whole slide histopathology images. This method allows for quicker and more effective data analysis. The first step involves preprocessing the imbalanced histopathology dataset, followed by augmentation and balancing utilizing two techniques: SMOTE and ADASYN. Next, a unique feature extraction framework is used to extract features, which are then inputted into the supervised three-class XGBoost algorithm for classification into three categories: non-tumor, viable tumor, and non-viable tumor. The experimental findings indicate that the proposed model exhibits superior efficiency, accuracy, and a more lightweight design in comparison to other current models for osteosarcoma detection. 展开更多
关键词 Medical image processing deep learning healthcare image classification HISTOPATHOLOGY
在线阅读 下载PDF
Identification of markers of saccharides in Polygonati rhizoma during the steaming process by MALDI-Q-TOF mass spectrometry imaging
14
作者 Chuang Liu Juan Chen +7 位作者 Jia Lao You Qin Ziling Wang Zhenni Xie Wei He Can Zhong Shuihan Zhang Jian Jin 《Food Science and Human Wellness》 2025年第4期1441-1448,共8页
Polygonati rhizoma is often used in Chinese medicine and as food.In this study,atmospheric pressure matrixassisted laser desorption ionization and quadruple-time-of-flight(MALDI-Q-TOF)mass spectrometry techniques were... Polygonati rhizoma is often used in Chinese medicine and as food.In this study,atmospheric pressure matrixassisted laser desorption ionization and quadruple-time-of-flight(MALDI-Q-TOF)mass spectrometry techniques were applied to P.rhizoma samples from Polygonatum cyrtonema Hua species.Positive ions were mainly detected in the mass range of m/z 200-600,while negative ions were mainly observed in the mass range of m/z 100-450.A total of 263 components were identified and the spatial distribution and changes in saccharides contents during the steaming process of P.rhizoma were investigated.Monosaccharide and disaccharide exhibit a relatively uniform distribution,while the oligosaccharides were mainly found in the bast of fresh P.rhizoma.Although the contents of monosaccharide and disaccharide were increased during steaming,that of trisaccharide,tetrasaccharide,and pentasaccharide were decreased.We used the 5 saccharide types with the greatest variation in content as variables for the principal component analysis(PCA)and cluster analysis.Both PCA and cluster analysis showed that these 5 saccharides can be used as markers in the steaming process of the P.rhizoma.Present study of mass spectrometry imaging provides novel insights into the spatiotemporal accumulation patterns of saccharides in P.rhizoma,improving our understanding of the steaming process. 展开更多
关键词 Polygonati rhizome Mass spectrometry imaging Saccharides process by steaming Marker
在线阅读 下载PDF
Microstructure effect of mechanical and cracking behaviors on brittle rocks using image-based fast Fourier transform method
15
作者 Mingyao Li Lei Peng +1 位作者 Dejun Liu Jianping Zuo 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期399-413,共15页
The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significan... The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significance to accurately characterize the actual microstructures and their influence on stress and damage evolution inside the rocks. In this study, an image-based fast Fourier transform (FFT) method is developed for reconstructing the actual rock microstructures by combining it with the digital image processing (DIP) technique. A series of experimental investigations were conducted to acquire information regarding the actual microstructure and the mechanical properties. Based on these experimental evidences, the processed microstructure information, in conjunction with the proposed micromechanical model, is incorporated into the numerical calculation. The proposed image-based FFT method was firstly validated through uniaxial compression tests. Subsequently, it was employed to predict and analyze the influence of microstructure on macroscopic mechanical behaviors, local stress distribution and the internal crack evolution process in brittle rocks. The distribution of feldspar is considerably more heterogeneous and scattered than that of quartz, which results in a greater propensity for the formation of cracks in feldspar. It is observed that initial cracks and new cracks, including intragranular and boundary ones, ultimately coalesce and connect as the primary through cracks, which are predominantly distributed along the boundary of the feldspar. This phenomenon is also predicted by the proposed numerical method. The results indicate that the proposed numerical method provides an effective approach for analyzing, understanding and predicting the nonlinear mechanical and cracking behaviors of brittle rocks by taking into account the actual microstructure characteristics. 展开更多
关键词 Rock microstructure Cracking process Brittle rocks Fast Fourier transform(FFT) Digital image processing(DIP)
在线阅读 下载PDF
Non-cooperative target extraction in complex industrial environment based on image segmentation
16
作者 WU Xiaojun WANG Peng +2 位作者 ZHAO He YU Xianzhe LI Tiancheng 《Journal of Measurement Science and Instrumentation》 2025年第1期119-127,共9页
In complex industrial scenes,it is difficult to acquire high-precision non-cooperative target pose under monocular visual servo control.This paper presents a new method of target extraction and high-precision edge fit... In complex industrial scenes,it is difficult to acquire high-precision non-cooperative target pose under monocular visual servo control.This paper presents a new method of target extraction and high-precision edge fitting for the wheel of the sintering trolley in steel production,which fuses multiple target extraction algorithms adapting to the working environment of the target.Firstly,based on obvious difference between the pixels of the target image and the non-target image in the gray histogram,these pixels were classified and then segmented in intraclass,removing interference factors and remaining the target image.Then,multiple segmentation results were merged and a final target image was obtained after small connected regions were eliminated.In the edge fitting stage,the edge fitting method with best-circumscribed rectangle was proposed to accurately fit the circular target edge.Finally,PnP algorithm was adopted for pose measurement of the target.The experimental results showed that the average estimation error of pose angleγwith respect to the z-axis rotation was 0.2346°,the average measurement error of pose angleαwith respect to the x-axis rotation was 0.1703°,and the average measurement error of pose angle β with respect to the y-axis rotation was 0.2275°.The proposed method has practical application value. 展开更多
关键词 digital image processing industrial environment non-cooperative target pose measurement
在线阅读 下载PDF
Unsupervised Low-Light Image Enhancement Based on Explicit Denoising and Knowledge Distillation
17
作者 Wenkai Zhang Hao Zhang +3 位作者 Xianming Liu Xiaoyu Guo Xinzhe Wang Shuiwang Li 《Computers, Materials & Continua》 2025年第2期2537-2554,共18页
Under low-illumination conditions, the quality of image signals deteriorates significantly, typically characterized by a peak signal-to-noise ratio (PSNR) below 10 dB, which severely limits the usability of the images... Under low-illumination conditions, the quality of image signals deteriorates significantly, typically characterized by a peak signal-to-noise ratio (PSNR) below 10 dB, which severely limits the usability of the images. Supervised methods, which utilize paired high-low light images as training sets, can enhance the PSNR to around 20 dB, significantly improving image quality. However, such data is challenging to obtain. In recent years, unsupervised low-light image enhancement (LIE) methods based on the Retinex framework have been proposed, but they generally lag behind supervised methods by 5–10 dB in performance. In this paper, we introduce the Denoising-Distilled Retine (DDR) method, an unsupervised approach that integrates denoising priors into a Retinex-based training framework. By explicitly incorporating denoising, the DDR method effectively addresses the challenges of noise and artifacts in low-light images, thereby enhancing the performance of the Retinex framework. The model achieved a PSNR of 19.82 dB on the LOL dataset, which is comparable to the performance of supervised methods. Furthermore, by applying knowledge distillation, the DDR method optimizes the model for real-time processing of low-light images, achieving a processing speed of 199.7 fps without incurring additional computational costs. While the DDR method has demonstrated superior performance in terms of image quality and processing speed, there is still room for improvement in terms of robustness across different color spaces and under highly resource-constrained conditions. Future research will focus on enhancing the model’s generalizability and adaptability to address these challenges. Our rigorous testing on public datasets further substantiates the DDR method’s state-of-the-art performance in both image quality and processing speed. 展开更多
关键词 Deep learning low-light image enhancement real-time processing knowledge distillation
在线阅读 下载PDF
A quasi-optimal stacking method for up-the-ramp readout images
18
作者 Guanghuan Wang Hu Zhan +5 位作者 Zun Luo Chengqi Liu Youhua Xu Chun Lin Yanfeng Wei Wenlong Fan 《Astronomical Techniques and Instruments》 2025年第2期119-126,共8页
A detector's nondestructive readout mode allows its pixels to be read multiple times during integration,enabling generation of a series of"up-the-ramp"images that continuously accumulate photons between ... A detector's nondestructive readout mode allows its pixels to be read multiple times during integration,enabling generation of a series of"up-the-ramp"images that continuously accumulate photons between successive frames.Because noise is correlated across these images,optimal stacking generally requires the images to be weighted unequally to achieve the best possible target signal-to-noise ratio(SNR).Objects in the sky present wildly varied brightness characteristics,and the counts in individual pixels of the same object can also span wide ranges.Therefore,a single set of weights cannot be optimal in all cases.To ensure that the stacked image is easily calibratable,we apply the same weight to all pixels within the same frame.In practice,results for high-SNR cases degraded only slightly when we used weights derived for low-SNR cases,whereas the low-SNR cases remained more sensitive to the weights.Therefore,we propose a quasi-optimal stacking method that maximizes the stacked SNR for the case where the RSN=1 per pixel in the last frame and use simulated data to demonstrate that this approach enhances the SNR more strongly than the equal-weight stacking and ramp fitting methods.Furthermore,we estimate the improvements in the limiting magnitudes for the China Space Station Telescope using the proposed method.When compared with the conventional readout mode,which is equivalent to selecting the last frame from the nondestructive readout,stacking 30 up-the-ramp images can improve the limiting magnitude by approximately 0.5 mag for the telescope's near-infrared observations,effectively reducing readout noise by approximately 62%. 展开更多
关键词 Astronomical detectors Infrared observatories Astronomy data reduction Astronomy image processing
在线阅读 下载PDF
Deep Convolution Neural Networks for Image-Based Android Malware Classification
19
作者 Amel Ksibi Mohammed Zakariah +1 位作者 Latifah Almuqren Ala Saleh Alluhaidan 《Computers, Materials & Continua》 2025年第3期4093-4116,共24页
The analysis of Android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches,such as signature-based detection,are no longer effective due to the ... The analysis of Android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches,such as signature-based detection,are no longer effective due to the continuously advancing level of sophistication.To resolve this problem,efficient and flexible malware detection tools are needed.This work examines the possibility of employing deep CNNs to detect Android malware by transforming network traffic into image data representations.Moreover,the dataset used in this study is the CIC-AndMal2017,which contains 20,000 instances of network traffic across five distinct malware categories:a.Trojan,b.Adware,c.Ransomware,d.Spyware,e.Worm.These network traffic features are then converted to image formats for deep learning,which is applied in a CNN framework,including the VGG16 pre-trained model.In addition,our approach yielded high performance,yielding an accuracy of 0.92,accuracy of 99.1%,precision of 98.2%,recall of 99.5%,and F1 score of 98.7%.Subsequent improvements to the classification model through changes within the VGG19 framework improved the classification rate to 99.25%.Through the results obtained,it is clear that CNNs are a very effective way to classify Android malware,providing greater accuracy than conventional techniques.The success of this approach also shows the applicability of deep learning in mobile security along with the direction for the future advancement of the real-time detection system and other deeper learning techniques to counter the increasing number of threats emerging in the future. 展开更多
关键词 Android malware detection deep convolutional neural network(DCNN) image processing CIC-AndMal2017 dataset exploratory data analysis VGG16 model
在线阅读 下载PDF
Real-time image processing and display in object size detection based on VC++ 被引量:2
20
作者 翟亚宇 潘晋孝 +1 位作者 刘宾 陈平 《Journal of Measurement Science and Instrumentation》 CAS 2014年第4期40-45,共6页
Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achie... Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs. 展开更多
关键词 size detection real-time image processing and display gain calibration edge fitting
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部