To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltai...To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltaic and wind resources,has been carried out.This has been done using a new meta-heuristic algorithm,improved artificial rabbits optimization(IARO).In this study,the uncertainty of solar and wind energy sources is modeled using Hang’s two-point estimating method(TPEM).The IARO algorithm is applied to calculate the best capacity of hub energy equipment,such as solar and wind renewable energy sources,combined heat and power(CHP)systems,steamboilers,energy storage,and electric cars in the day-aheadmarket.The standard ARO algorithmis developed to mimic the foraging behavior of rabbits,and in this work,the algorithm’s effectiveness in avoiding premature convergence is improved by using the dystudynamic inertia weight technique.The proposed IARO-based scheduling framework’s performance is evaluated against that of traditional ARO,particle swarm optimization(PSO),and salp swarm algorithm(SSA).The findings show that,in comparison to previous approaches,the suggested meta-heuristic scheduling framework based on the IARO has increased energy profit in day-ahead electricity,gas,and heating markets by satisfying the operational and energy hub limitations.Additionally,the results show that TPEM approach dependability consideration decreased hub energy’s profit by 8.995%as compared to deterministic planning.展开更多
Since the introduction of the concept, studies on valuation of ecosystem services have been overwhelming, in cognizance of its great significance. In this article, the authors took Northeast China as the study area an...Since the introduction of the concept, studies on valuation of ecosystem services have been overwhelming, in cognizance of its great significance. In this article, the authors took Northeast China as the study area and applied the published coefficients for the world by Costanza to calculate the ecosystem services values through a spatial convolution method. The convolution analysis was done with a square processor with 5×5 neighborhood cells. The results showed that the ecosystem services value for the study area in the year 2003 was US$44 990 million which is US$89 million less than the value without operation, and the main contributions for that decrease were from water bodies, wetlands and estuaries. It is expected that this article can attract more interest to explore this field adopting geographic methods.展开更多
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t...An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.展开更多
This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the p...This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the parabolic context.展开更多
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from comput...The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions,the proposed procedures are analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that they generate the correct type of refinement and lead to the desired control under consideration.展开更多
A method which is especially suitable for microcomputer calculation of the true orientation distribution function (ODF) according to the maximum-entropy estimate is proposed for hexagonal system polycrystalline materi...A method which is especially suitable for microcomputer calculation of the true orientation distribution function (ODF) according to the maximum-entropy estimate is proposed for hexagonal system polycrystalline materials with physical symmetry.The resultant computational software system has been also designed and first carried out in a microcomputer PANAFACOM-U1200 being on line with the X-ray diffractometer D/max-3A.The simu- lated calculation shows that the method is concisely pragmatic and easily popularized,while the results obtained are trust worthy.展开更多
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi...The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.展开更多
Estimating the global state of a networked system is an important problem in many application domains.The classical approach to tackling this problem is the periodic(observation)method,which is inefficient because it ...Estimating the global state of a networked system is an important problem in many application domains.The classical approach to tackling this problem is the periodic(observation)method,which is inefficient because it often observes states at a very high frequency.This inefficiency has motivated the idea of event-based method,which leverages the evolution dynamics in question and makes observations only when some rules are triggered(i.e.,only when certain conditions hold).This paper initiates the investigation of using the event-based method to estimate the equilibrium in the new application domain of cybersecurity,where equilibrium is an important metric that has no closed-form solutions.More specifically,the paper presents an event-based method for estimating cybersecurity equilibrium in the preventive and reactive cyber defense dynamics,which has been proven globally convergent.The presented study proves that the estimated equilibrium from our trigger rule i)indeed converges to the equilibrium of the dynamics and ii)is Zeno-free,which assures the usefulness of the event-based method.Numerical examples show that the event-based method can reduce 98%of the observation cost incurred by the periodic method.In order to use the event-based method in practice,this paper investigates how to bridge the gap between i)the continuous state in the dynamics model,which is dubbed probability-state because it measures the probability that a node is in the secure or compromised state,and ii)the discrete state that is often encountered in practice,dubbed sample-state because it is sampled from some nodes.This bridge may be of independent value because probability-state models have been widely used to approximate exponentially-many discrete state systems.展开更多
This paper givers an estimated formula of convergence rate for parallel multisplitting iterative method.Using the formula,we can simplify and unify the proof of convergence of PMI_method.
<div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the...<div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the optimal error estimates. The numerical experiments imply that <em>L</em><sup>2 </sup>norms error estimates can reach to order <em>k</em> + 1 by using time discretization methods. </div>展开更多
H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and unique...H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.展开更多
Finite Element Method (FEM), when applied to solve problems, has faced some challenges over the years, such as time consumption and the complexity of assumptions. In particular, the making of assumptions has had a sig...Finite Element Method (FEM), when applied to solve problems, has faced some challenges over the years, such as time consumption and the complexity of assumptions. In particular, the making of assumptions has had a significant influence on the accuracy of the method, making it mandatory to carry out sensitivity analysis. The sensitivity analysis helps to identify the level of impact the assumptions have on the method. However, sensitivity analysis via FEM can be very challenging. A priori error estimation, an integral part of FEM, is a basic mathematical tool for predicting the accuracy of numerical solutions. By understanding the relationship between the mesh size, the order of basis functions, and the resulting error, practitioners can effectively design and apply FEM to solve complex Partial Differential Equations (PDEs) with confidence in the reliability of their results. Thus, the coercive property and A priori error estimation based on the L1 formula on a mesh in time and the Mamadu-Njoseh basis functions in space are investigated for a linearly distributed time-order fractional telegraph equation with restricted initial conditions. For this purpose, we constructed a mathematical proof of the coercive property for the fully discretized scheme. Also, we stated and proved a cardinal theorem for a priori error estimation of the approximate solution for the fully discretized scheme. We noticed the role of the restricted initial conditions imposed on the solution in the analysis of a priori error estimation.展开更多
Error estimates of Galerkin method for Kuramoto-Sivashingsky (K-S) equation in space dimension ≥3 are derived in the paper. These results furnish strong evidence for the computation of the solutions.
In this paper we give an almost sharp error estimate of Halley’s iteration for the majorizing sequence. Compared with the corresponding results in [6,14], it is far better. Meanwhile,the convergence theorem is establ...In this paper we give an almost sharp error estimate of Halley’s iteration for the majorizing sequence. Compared with the corresponding results in [6,14], it is far better. Meanwhile,the convergence theorem is established .for Halley’s iteration in Banach spaces.展开更多
Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level met...Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level method were derived. The posteriori error estimates contained additional terms in comparison to the error estimates for the solution obtained by the standard finite element method. The importance of these additional terms in the error estimates was investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than of convergence of discrete solution.展开更多
Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the ...Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the fact that the accuracy of time discretization decays at half an order when the characteristic line goes out of the domain. In present paper, the author shows that, as a remedy, a simple lumped scheme yields a full accuracy approximation. Forthermore, some local error bounds independent of the small viscosity axe derived for this scheme outside the boundary layers.展开更多
In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are prove...In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are proved by using the Euler time scheme combined with Galerkin spatial method. Furthermore, an asymptotic behavior in Sobolev norm is de- duced using Benssoussau-Lions' algorithm. Finally, the results of some numerical experiments are presented to support the theory.展开更多
In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimati...In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimation between the spectral approximate solution and the exact solution is obtained.展开更多
A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illus...A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illustrate the accuracy and feasibility of this method.展开更多
基金This research is supported by the Deputyship forResearch&Innovation,Ministry of Education in Saudi Arabia under Project Number(IFP-2022-35).
文摘To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltaic and wind resources,has been carried out.This has been done using a new meta-heuristic algorithm,improved artificial rabbits optimization(IARO).In this study,the uncertainty of solar and wind energy sources is modeled using Hang’s two-point estimating method(TPEM).The IARO algorithm is applied to calculate the best capacity of hub energy equipment,such as solar and wind renewable energy sources,combined heat and power(CHP)systems,steamboilers,energy storage,and electric cars in the day-aheadmarket.The standard ARO algorithmis developed to mimic the foraging behavior of rabbits,and in this work,the algorithm’s effectiveness in avoiding premature convergence is improved by using the dystudynamic inertia weight technique.The proposed IARO-based scheduling framework’s performance is evaluated against that of traditional ARO,particle swarm optimization(PSO),and salp swarm algorithm(SSA).The findings show that,in comparison to previous approaches,the suggested meta-heuristic scheduling framework based on the IARO has increased energy profit in day-ahead electricity,gas,and heating markets by satisfying the operational and energy hub limitations.Additionally,the results show that TPEM approach dependability consideration decreased hub energy’s profit by 8.995%as compared to deterministic planning.
基金funded by the Major Program of National Natural Science Foundation of China (40930101)National Technology Introduction Program of China (948 Program,2009-Z31)the Key Project of the Commonweal Foundation of China's National Academy (2010-02)~~
文摘Since the introduction of the concept, studies on valuation of ecosystem services have been overwhelming, in cognizance of its great significance. In this article, the authors took Northeast China as the study area and applied the published coefficients for the world by Costanza to calculate the ecosystem services values through a spatial convolution method. The convolution analysis was done with a square processor with 5×5 neighborhood cells. The results showed that the ecosystem services value for the study area in the year 2003 was US$44 990 million which is US$89 million less than the value without operation, and the main contributions for that decrease were from water bodies, wetlands and estuaries. It is expected that this article can attract more interest to explore this field adopting geographic methods.
基金Supported by the National Natural Science Foundation of China (10601022)Natural Science Foundation of Inner Mongolia Autonomous Region (200607010106)Youth Science Foundation of Inner Mongolia University(ND0702)
文摘An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
文摘This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the parabolic context.
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
文摘The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions,the proposed procedures are analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that they generate the correct type of refinement and lead to the desired control under consideration.
文摘A method which is especially suitable for microcomputer calculation of the true orientation distribution function (ODF) according to the maximum-entropy estimate is proposed for hexagonal system polycrystalline materials with physical symmetry.The resultant computational software system has been also designed and first carried out in a microcomputer PANAFACOM-U1200 being on line with the X-ray diffractometer D/max-3A.The simu- lated calculation shows that the method is concisely pragmatic and easily popularized,while the results obtained are trust worthy.
基金supported by the Innovation Fund Project of the Gansu Education Department(Grant No.2021B-099).
文摘The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.
基金supported in part by the National Natural Sciences Foundation of China(62072111)。
文摘Estimating the global state of a networked system is an important problem in many application domains.The classical approach to tackling this problem is the periodic(observation)method,which is inefficient because it often observes states at a very high frequency.This inefficiency has motivated the idea of event-based method,which leverages the evolution dynamics in question and makes observations only when some rules are triggered(i.e.,only when certain conditions hold).This paper initiates the investigation of using the event-based method to estimate the equilibrium in the new application domain of cybersecurity,where equilibrium is an important metric that has no closed-form solutions.More specifically,the paper presents an event-based method for estimating cybersecurity equilibrium in the preventive and reactive cyber defense dynamics,which has been proven globally convergent.The presented study proves that the estimated equilibrium from our trigger rule i)indeed converges to the equilibrium of the dynamics and ii)is Zeno-free,which assures the usefulness of the event-based method.Numerical examples show that the event-based method can reduce 98%of the observation cost incurred by the periodic method.In order to use the event-based method in practice,this paper investigates how to bridge the gap between i)the continuous state in the dynamics model,which is dubbed probability-state because it measures the probability that a node is in the secure or compromised state,and ii)the discrete state that is often encountered in practice,dubbed sample-state because it is sampled from some nodes.This bridge may be of independent value because probability-state models have been widely used to approximate exponentially-many discrete state systems.
文摘This paper givers an estimated formula of convergence rate for parallel multisplitting iterative method.Using the formula,we can simplify and unify the proof of convergence of PMI_method.
文摘<div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the optimal error estimates. The numerical experiments imply that <em>L</em><sup>2 </sup>norms error estimates can reach to order <em>k</em> + 1 by using time discretization methods. </div>
基金Supported by NNSF(10601022,11061021)Supported by NSF of Inner Mongolia Au-tonomous Region(200607010106)Supported by SRP of Higher Schools of Inner Mongolia(NJ10006)
文摘H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.
文摘Finite Element Method (FEM), when applied to solve problems, has faced some challenges over the years, such as time consumption and the complexity of assumptions. In particular, the making of assumptions has had a significant influence on the accuracy of the method, making it mandatory to carry out sensitivity analysis. The sensitivity analysis helps to identify the level of impact the assumptions have on the method. However, sensitivity analysis via FEM can be very challenging. A priori error estimation, an integral part of FEM, is a basic mathematical tool for predicting the accuracy of numerical solutions. By understanding the relationship between the mesh size, the order of basis functions, and the resulting error, practitioners can effectively design and apply FEM to solve complex Partial Differential Equations (PDEs) with confidence in the reliability of their results. Thus, the coercive property and A priori error estimation based on the L1 formula on a mesh in time and the Mamadu-Njoseh basis functions in space are investigated for a linearly distributed time-order fractional telegraph equation with restricted initial conditions. For this purpose, we constructed a mathematical proof of the coercive property for the fully discretized scheme. Also, we stated and proved a cardinal theorem for a priori error estimation of the approximate solution for the fully discretized scheme. We noticed the role of the restricted initial conditions imposed on the solution in the analysis of a priori error estimation.
文摘Error estimates of Galerkin method for Kuramoto-Sivashingsky (K-S) equation in space dimension ≥3 are derived in the paper. These results furnish strong evidence for the computation of the solutions.
基金Jointly supported by China Major Key Project for Basic Researcher and Provincial Natrual Science Foundation.
文摘In this paper we give an almost sharp error estimate of Halley’s iteration for the majorizing sequence. Compared with the corresponding results in [6,14], it is far better. Meanwhile,the convergence theorem is established .for Halley’s iteration in Banach spaces.
文摘Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level method were derived. The posteriori error estimates contained additional terms in comparison to the error estimates for the solution obtained by the standard finite element method. The importance of these additional terms in the error estimates was investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than of convergence of discrete solution.
文摘Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the fact that the accuracy of time discretization decays at half an order when the characteristic line goes out of the domain. In present paper, the author shows that, as a remedy, a simple lumped scheme yields a full accuracy approximation. Forthermore, some local error bounds independent of the small viscosity axe derived for this scheme outside the boundary layers.
文摘In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are proved by using the Euler time scheme combined with Galerkin spatial method. Furthermore, an asymptotic behavior in Sobolev norm is de- duced using Benssoussau-Lions' algorithm. Finally, the results of some numerical experiments are presented to support the theory.
文摘In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimation between the spectral approximate solution and the exact solution is obtained.
文摘A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illustrate the accuracy and feasibility of this method.