期刊文献+
共找到529,410篇文章
< 1 2 250 >
每页显示 20 50 100
A 3D attention U-Net network and its application in geological model parameterization
1
作者 LI Xiaobo LI Xin +4 位作者 YAN Lin ZHOU Tenghua LI Shunming WANG Jiqiang LI Xinhao 《Petroleum Exploration and Development》 2023年第1期183-190,共8页
To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not... To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not using a trained C3D video motion analysis model to extract the style of a 3D model,and applied to complement the details of geologic model lost in the dimension reduction of PCA method in this study.The 3D attention U-Net network was applied to a complex river channel sandstone reservoir to test its effects.The results show that compared with CNN-PCA method,the 3D attention U-Net network could better complement the details of geological model lost in the PCA dimension reduction,better reflect the fluid flow features in the original geologic model,and improve history matching results. 展开更多
关键词 reservoir history matching geological model parameterization deep learning attention mechanism 3D u-net
在线阅读 下载PDF
ICA-Unet:An improved U-net network for brown adipose tissue segmentation
2
作者 Haolin Wang Zhonghao Wang +4 位作者 Jingle Wang Kang Li Guohua Geng Fei Kang Xin Cao 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2022年第3期70-80,共11页
Brown adipose tissue(BAT)is a kind of adipose tissue engaging in thermoregulatory thermogenesis,metaboloregulatory thermogenesis,and secretory.Current studies have revealed that BAT activity is negatively correlated w... Brown adipose tissue(BAT)is a kind of adipose tissue engaging in thermoregulatory thermogenesis,metaboloregulatory thermogenesis,and secretory.Current studies have revealed that BAT activity is negatively correlated with adult body weight and is considered a target tissue for the treatment of obesity and other metabolic-related diseases.Additionally,the activity of BAT presents certain differences between different ages and genders.Clinically,BAT segmentation based on PET/CT data is a reliable method for brown fat research.However,most of the current BAT segmentation methods rely on the experience of doctors.In this paper,an improved U-net network,ICA-Unet,is proposed to achieve automatic and precise segmentation of BAT.First,the traditional 2D convolution layer in the encoder is replaced with a depth-wise overparameterized convolutional(Do-Conv)layer.Second,the channel attention block is introduced between the double-layer convolution.Finally,the image information entropy(IIE)block is added in the skip connections to strengthen the edge features.Furthermore,the performance of this method is evaluated on the dataset of PET/CT images from 368 patients.The results demonstrate a strong agreement between the automatic segmentation of BAT and manual annotation by experts.The average DICE coeffcient(DSC)is 0.9057,and the average Hausdorff distance is 7.2810.Experimental results suggest that the method proposed in this paper can achieve effcient and accurate automatic BAT segmentation and satisfy the clinical requirements of BAT. 展开更多
关键词 PET/CT segmentation of brown adipose tissue u-net medical image processing deep learning
在线阅读 下载PDF
PM_(2.5) probabilistic forecasting system based on graph generative network with graph U-nets architecture
3
作者 LI Yan-fei YANG Rui +1 位作者 DUAN Zhu LIU Hui 《Journal of Central South University》 2025年第1期304-318,共15页
Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific ... Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction. 展开更多
关键词 PM_(2.5)interval forecasting graph generative network graph u-nets sparse Bayesian regression kernel density estimation spatial-temporal characteristics
在线阅读 下载PDF
基于优化的U-net网络掘进工作面煤岩识别方法研究
4
作者 栾恒杰 杨玉晴 +4 位作者 刘建康 蒋宇静 刘建荣 马德良 张孙豪 《采矿与岩层控制工程学报》 北大核心 2025年第1期94-108,共15页
为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3... 为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3种网络模型对数据集进行训练,并对训练结果进行对比分析。分析结果表明:在训练次数达到100次时,3种网络模型准确率分别为89.25%, 93.52%及94.55%,改进U-net网络模型准确率相较改进前提高1.03%;在煤岩识别方面, U-net网络模型比FCN网络模型取得了更高的准确率,在测试环节中也表现出了更好的性能;在预测环节中,对煤岩边缘部分的识别做到了更为精准的处理。该方法可为煤岩识别的精准度的提高提供参考。 展开更多
关键词 煤岩识别 深度学习 u-net网络 CANNY边缘检测算法
在线阅读 下载PDF
改进Deep Q Networks的交通信号均衡调度算法
5
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 Deep Q networks 深度强化学习 智能交通
在线阅读 下载PDF
基于融入注意力机制的改进U-Net鲁棒焊缝识别算法 被引量:1
6
作者 周思羽 刘帅师 +1 位作者 杨宏韬 宋宜虎 《计算机集成制造系统》 北大核心 2025年第1期135-146,共12页
针对复杂焊接环境下大量弧光噪声造成焊缝激光条纹分割精度低的问题,提出一种融入注意力机制的改进U-Net鲁棒焊缝识别算法。首先,在模型的特征融合过程中使用超强通道注意力机制实现特征的加权融合。然后,在编码器结构之后,加入特征分... 针对复杂焊接环境下大量弧光噪声造成焊缝激光条纹分割精度低的问题,提出一种融入注意力机制的改进U-Net鲁棒焊缝识别算法。首先,在模型的特征融合过程中使用超强通道注意力机制实现特征的加权融合。然后,在编码器结构之后,加入特征分类结构,使其可以输出焊缝对应类型名称。最后,由于网络训练中正负样本失衡会对识别结果产生影响,在模型的损失函数中添加Dice Loss和Focal Loss来进行修正,以提高模型的鲁棒性和泛化性。另外,在模型训练的过程中提出了一种像素位置信息和图像种类信息融合的方式,以增强焊缝识别的鲁棒性。实验表明,在具有弧光、烟雾噪声等干扰环境下,所提方法得到了较好的实验结果,能够满足检测对精度和实时性的需求,在具有弧光、烟雾等干扰的实际焊接现场中具有一定的应用前景。 展开更多
关键词 焊缝识别 图像分割 注意力机制 u-net 鲁棒性
在线阅读 下载PDF
Self-potential inversion based on Attention U-Net deep learning network
7
作者 GUO You-jun CUI Yi-an +3 位作者 CHEN Hang XIE Jing ZHANG Chi LIU Jian-xin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3156-3167,共12页
Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention an... Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring. 展开更多
关键词 SELF-POTENTIAL attention mechanism u-net deep learning network INVERSION landfill
在线阅读 下载PDF
基于U-Net的半航空瞬变电磁降噪方法及应用
8
作者 刘东 冯浩 +3 位作者 王用鑫 周小生 姚宇洪 孙怀凤 《煤田地质与勘探》 北大核心 2025年第1期226-234,共9页
【目的和方法】半航空瞬变电磁法(SATEM)是一种高效的地球物理勘技术,在矿产资源勘探、地下水及地热资源调查等方面得到了广泛的应用。然而,所采集的数据常常受到噪声干扰,对后续的数据处理和解释精度产生了显著影响。为了解决噪声残留... 【目的和方法】半航空瞬变电磁法(SATEM)是一种高效的地球物理勘技术,在矿产资源勘探、地下水及地热资源调查等方面得到了广泛的应用。然而,所采集的数据常常受到噪声干扰,对后续的数据处理和解释精度产生了显著影响。为了解决噪声残留及有效信号丢失的问题,提升去噪效果,并减少主观因素的影响,将U-Net运用到处理半航空瞬变电磁数据降噪领域,提出一种基于U-Net深度学习架构的半航空瞬变电磁数据降噪方法。该方法使用U型编解码网络结构,通过端到端的训练方式,自动学习并提取数据中的噪声特征。编码结构学习并提取数据中的噪声信息特征,解码结构重组数据特征还原去噪后数据尺寸。通过在编码和解码结构的对称层上引入跳跃连接,有效融合了包含丰富空间信息的低级特征与包含语义信息的高级特征,从而实现对噪声的准确去除。【结果和结论】实际算例表明,经U-Net去噪后的数据信噪比提升约10 dB,与传统去噪方法相比,U-Net在瞬变电磁数据的噪声去除效果上具有明显优势。在广西贺州至巴马高速公路(来宾至都安段)凤凰2号隧道的实测数据降噪工作中,降噪后的多测道图和视电阻率成像结果的可解释性显著增强。证明本方法在半航空瞬变电磁数据降噪中的重要实际意义,为未来的地球物理勘探提供了有效的技术支持。 展开更多
关键词 半航空瞬变电磁法 深度学习 u-net 降噪 复杂噪声
在线阅读 下载PDF
基于改进U-Net3+的相控阵超声图像语义分割
9
作者 毛鑫玥 王慧锋 +2 位作者 周家乐 顾震 颜秉勇 《华东理工大学学报(自然科学版)》 北大核心 2025年第2期242-249,共8页
超声相控阵成像已广泛应用于聚乙烯燃气管道的焊接缺陷检测中,随着机器视觉技术的快速发展,利用机器辅助或自动化分析超声图像能极大地提高缺陷检测速度,减少人为判断失误的发生。在基于超声图像的焊接缺陷检测技术中,图像语义分割精度... 超声相控阵成像已广泛应用于聚乙烯燃气管道的焊接缺陷检测中,随着机器视觉技术的快速发展,利用机器辅助或自动化分析超声图像能极大地提高缺陷检测速度,减少人为判断失误的发生。在基于超声图像的焊接缺陷检测技术中,图像语义分割精度对缺陷类别和严重等级的判定至关重要。本文在U-Net3+网络的基础上提出一种融入残差及注意力机制的改进模型,并应用于电熔焊接缺陷检测的相控阵超声图像语义分割。首先,改进模型通过在编码器各层之间采用残差结构来提升编码器的图像特征提取能力;其次,通过在跳跃连接中引入卷积块注意力模块(Convolutional Block Attention Module,CBAM),加强模型对原始图像信息的利用率,使模型更易聚焦于原始图像中的有效区域。实验结果表明,改进后的模型在电熔焊接超声图像上具有良好的分割效果,在Dice、mIoU两项指标上,相比U-Net分别提升了8.81%和12.84%;相比U-Net3+的分割效果分别提升了1.09%和1.81%。 展开更多
关键词 相控阵超声图像 图像语义分割 u-net3+ 注意力机制 残差网络
在线阅读 下载PDF
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
10
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 Deep Learning Convolutional Neural networks (CNN) Seismic Fault Identification u-net 3D Model Geological Exploration
在线阅读 下载PDF
基于U-Net与GAN的低照度激光雷达图像缺失区域补全算法
11
作者 刘向玲 任勇 王璐 《激光杂志》 北大核心 2025年第1期135-141,共7页
在低照度环境下,激光雷达图像常因光照不足、背景噪声干扰以及信号衰减等因素导致图像质量显著下降,缺失区域呈现复杂多变的形态,包括不同的形状、大小和位置,这些特点具有时变性,使得补全图像缺失区域准确性较低。为此,提出基于U-Net与... 在低照度环境下,激光雷达图像常因光照不足、背景噪声干扰以及信号衰减等因素导致图像质量显著下降,缺失区域呈现复杂多变的形态,包括不同的形状、大小和位置,这些特点具有时变性,使得补全图像缺失区域准确性较低。为此,提出基于U-Net与GAN的低照度激光雷达图像缺失区域补全算法。通过U-Net网络的编码器和解码器,在下采样和上采样之间的跨层连接中加入双注意力机制,引入动态学习率衰减策略优化图像缺失区域分割模型,分割出缺失区域。根据GAN补全图像缺失区域,利用预补全模型展开初步补全,还原图像低维结构信息;通过增强补全模型还原图像缺失区域的高维纹理信息。实验分析表明,所提算法补全图像的峰值信噪比(PSNR)高达34.511 dB,信息保真度(VIF)为0.974,可以获取比较满意的低照度激光雷达图像缺失区域补全效果。 展开更多
关键词 u-net GAN 低照度 激光雷达图像 缺失区域
在线阅读 下载PDF
Application of virtual reality technology improves the functionality of brain networks in individuals experiencing pain 被引量:2
12
作者 Takahiko Nagamine 《World Journal of Clinical Cases》 SCIE 2025年第3期66-68,共3页
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u... Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field. 展开更多
关键词 Virtual reality PAIN ANXIETY Salience network Default mode network
在线阅读 下载PDF
基于优化U-Net神经网络模型在医学图像分割的应用
13
作者 张筱旭 邵英龙 +1 位作者 严孟慧 王健庆 《现代信息科技》 2025年第4期47-52,共6页
医学图像是临床诊断的重要参考,如何快速且准确地分割出医学图像中的病灶区域,受到了人们的广泛关注。当前,利用深度学习进行图像处理已成为主流,医学图像分割因其独特的应用场景,成为深度学习在图像处理领域应用的成功范例。U-Net网络... 医学图像是临床诊断的重要参考,如何快速且准确地分割出医学图像中的病灶区域,受到了人们的广泛关注。当前,利用深度学习进行图像处理已成为主流,医学图像分割因其独特的应用场景,成为深度学习在图像处理领域应用的成功范例。U-Net网络凭借其特有的U型结构,在医学图像分割领域取得了不错的性能,但该网络仍存在精度不够高等问题。文章对基于优化U-Net模型的医学图像自动分割方法展开研究,将CBAM(Convolutional Block Attention Module)和SE(Squeeze-and-Excitation)模块与U-Net网络结构相结合,实现了对人体器官的高度准确分割。在眼球数据集上的实验结果表明,优化后的U-Net网络相较于单纯的U-Net网络,准确率更高(0.905)。该研究具有重要的临床应用前景,能够对人体器官、病变区域等目标进行有效分割,为医疗实践带来积极影响。 展开更多
关键词 u-net神经网络 图像分割 医学图像 注意力机制
在线阅读 下载PDF
基于残差U-net网络的地震资料分辨率提高方法
14
作者 董博艺 张进 《中国海洋大学学报(自然科学版)》 CAS 北大核心 2025年第1期140-148,共9页
高分辨率地震资料处理是获取高品质地震资料、实现薄储层良好地震地质解释的关键。传统提高地震分辨率的方法应用条件苛刻,关键参数求取复杂,在实际应用中受到诸多限制。深度学习中的U-net网络以纯数据驱动的优势,可学习低分辨率地震记... 高分辨率地震资料处理是获取高品质地震资料、实现薄储层良好地震地质解释的关键。传统提高地震分辨率的方法应用条件苛刻,关键参数求取复杂,在实际应用中受到诸多限制。深度学习中的U-net网络以纯数据驱动的优势,可学习低分辨率地震记录到高分辨率标签的非线性关系,实现地震资料的高分辨率处理。本文设计了残差U-net网络结构,同时提出了基于概率密度函数控制的同分布反射系数集生成方法,将测井反射系数的概率密度函数作为一种先验约束信息融入训练样本,不仅保证了足够的同分布样本来训练网络,还确保了训练样本更符合工区实际情况,以此提高模型预测的准确性。模型测试和实际资料应用结果表明,本文提出的方法能够有效应用于地震资料分辨率的提高,同时拓宽频带。 展开更多
关键词 提高分辨率 u-net 残差结构 同分布
在线阅读 下载PDF
U-Net Inspired Deep Neural Network-Based Smoke Plume Detection in Satellite Images
15
作者 Ananthakrishnan Balasundaram Ayesha Shaik +1 位作者 Japmann Kaur Banga Aman Kumar Singh 《Computers, Materials & Continua》 SCIE EI 2024年第4期779-799,共21页
Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have beenidentified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions isessent... Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have beenidentified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions isessential for a comprehensive understanding of their impact on the Earth’s climate and for effectively enforcingemission regulations at a large scale. This work examines the feasibility of detecting and quantifying industrialsmoke plumes using freely accessible geo-satellite imagery. The existing systemhas so many lagging factors such aslimitations in accuracy, robustness, and efficiency and these factors hinder the effectiveness in supporting timelyresponse to industrial fires. In this work, the utilization of grayscale images is done instead of traditional colorimages for smoke plume detection. The dataset was trained through a ResNet-50 model for classification and aU-Net model for segmentation. The dataset consists of images gathered by European Space Agency’s Sentinel-2 satellite constellation from a selection of industrial sites. The acquired images predominantly capture scenesof industrial locations, some of which exhibit active smoke plume emissions. The performance of the abovementionedtechniques and models is represented by their accuracy and IOU (Intersection-over-Union) metric.The images are first trained on the basic RGB images where their respective classification using the ResNet-50model results in an accuracy of 94.4% and segmentation using the U-Net Model with an IOU metric of 0.5 andaccuracy of 94% which leads to the detection of exact patches where the smoke plume has occurred. This work hastrained the classification model on grayscale images achieving a good increase in accuracy of 96.4%. 展开更多
关键词 Smoke plume ResNet-50 u-net geo satellite images early warning global monitoring
在线阅读 下载PDF
基于U-Net网络与卡尔曼滤波的瞳孔检测跟踪算法
16
作者 张国静 王桂祥 《现代电子技术》 北大核心 2025年第9期137-142,共6页
眼动跟踪是人机交互(HCI)及其应用的重要技术之一,越来越受到人们的重视。然而,在实际情况下往往受到大量非高斯噪声的影响,如不可控的光照、人眼的遮挡及连续的人眼移动等,这会导致瞳孔检测实时性和准确性的下降。因此,文中设计了一种... 眼动跟踪是人机交互(HCI)及其应用的重要技术之一,越来越受到人们的重视。然而,在实际情况下往往受到大量非高斯噪声的影响,如不可控的光照、人眼的遮挡及连续的人眼移动等,这会导致瞳孔检测实时性和准确性的下降。因此,文中设计了一种基于U-Net语义分割网络的瞳孔检测方法。首先,利用该方法对瞳孔区域进行分割;然后对分割的瞳孔区域处理,确定其质心位置,达到瞳孔中心定位的目的;最后,又提出了一种改进的卡尔曼滤波器的稳态增益,通过在卡尔曼增益上引入分数阶反馈环路来实现,并利用改进的卡尔曼滤波器对瞳孔位置进行跟踪,消除非高斯噪声,可以大大提高瞳孔在线稳定检测的准确性。实验结果表明,所提方法能够实时跟踪人眼,具有较高的精确度和鲁棒性,且最佳均方根误差(RMSE)可达到0.78。 展开更多
关键词 眼动跟踪 人机交互 非高斯噪声 u-net网络 语义分割 瞳孔检测 分数阶 卡尔曼滤波
在线阅读 下载PDF
基于对偶贝叶斯U-Net的波阻抗不确定性反演方法研究
17
作者 王梓旭 王守东 +1 位作者 周晨 程万里 《石油物探》 北大核心 2025年第1期138-150,共13页
传统的深度神经网络通常只能实现确定性的预测,无法对反演结果进行不确定性分析,即无法对反演结果的可靠性进行评价。为实现标签数据不足条件下精确的波阻抗反演和对反演结果的不确定性分析,提出了一种基于对偶贝叶斯U-Net的波阻抗不确... 传统的深度神经网络通常只能实现确定性的预测,无法对反演结果进行不确定性分析,即无法对反演结果的可靠性进行评价。为实现标签数据不足条件下精确的波阻抗反演和对反演结果的不确定性分析,提出了一种基于对偶贝叶斯U-Net的波阻抗不确定性反演方法。首先,开展基于对偶贝叶斯U-Net、前沿深度学习反演方法和传统不确定性反演方法的模拟数据实验,对比分析3种方法的反演精度。然后,将对偶贝叶斯U-Net和传统不确定性反演方法的反演可靠性和对于含噪数据反演的鲁棒性进行对比分析。最后,将对偶贝叶斯U-Net应用于实际地震资料波阻抗反演中。模拟数据实验结果表明,该方法的对偶贝叶斯U-Net在少量标签数据条件下具有较高反演精度并对含噪数据反演有较强鲁棒性。此外,不确定性分析表明,该方法的反演结果可靠性强。实际数据测试结果表明,对偶贝叶斯U-Net能在实际工区数据反演中获得合理并可靠的反演结果。 展开更多
关键词 波阻抗反演 不确定性反演 深度神经网络 少量标签数据 对偶贝叶斯u-net
在线阅读 下载PDF
基于U-Net网络和对极几何的介入导管空间形状重建方法
18
作者 王康 何彦霖 +2 位作者 黄宇辰 魏聚群 娄小平 《仪器仪表学报》 北大核心 2025年第1期147-156,共10页
介入手术是治疗心血管疾病的主要方式之一,现有手术主要依靠二维荧光透视图像指导医生操作,无法实现术中介入导管的三维可视化,限制了手术效率和安全性。面向心血管介入手术临床精准治疗的需求,提出一种基于U-Net网络和对极几何的介入... 介入手术是治疗心血管疾病的主要方式之一,现有手术主要依靠二维荧光透视图像指导医生操作,无法实现术中介入导管的三维可视化,限制了手术效率和安全性。面向心血管介入手术临床精准治疗的需求,提出一种基于U-Net网络和对极几何的介入手术导管空间形状重建方法,实现术中介入手术导管三维形状的重建。首先利用U-Net网络分割出双平面荧光透视图像中导管的轮廓,并通过骨架化算法提取出导管的中心线。接着研究了基于对极几何约束的立体视觉匹配方法,通过求解极线与导管中心线的交点,求解出双平面投影中导管点集的对应关系,并结合投影模型与导管中心线构造空间射线,通过逐个求解空间射线的相交点,将空间曲线重建问题转换成射线相交问题,实现导管三维空间形状的精确重建。最后,为验证所提出介入手术导管空间形状重建算法的可行性,进行了双平面透视图像重建导管实验,结果显示导管的最大形状重建误差<1.55 mm,均方误差<0.89 mm,豪斯多夫距离不足1.49 mm。表明所提出方法可实现介入手术导管三维形状的精确重建,为提升血管介入手术精准导航和柔性导丝安全操控提供新方法和技术基础。 展开更多
关键词 荧光透视图像 介入手术导管 形状重建 u-net 对极几何
在线阅读 下载PDF
基于U-Net和数学形态学的混凝土桥梁病害定量识别方法研究
19
作者 黄彩萍 田旺源 李青 《桥梁建设》 北大核心 2025年第1期64-71,共8页
为使桥梁病害检测更加高效、客观和智能,提出一种自动识别并定量计算混凝土病害尺寸的方法。该方法采用视觉几何组网络(Visual Geometry Group Network,VGG)作为U形网络(U-Net)的主干网络,对混凝土病害(剥落、裂缝和露筋)图像进行语义分... 为使桥梁病害检测更加高效、客观和智能,提出一种自动识别并定量计算混凝土病害尺寸的方法。该方法采用视觉几何组网络(Visual Geometry Group Network,VGG)作为U形网络(U-Net)的主干网络,对混凝土病害(剥落、裂缝和露筋)图像进行语义分割,采用数学形态学算法对图像中的病害区域进行优化。通过MATLAB软件计算得到优化后的分割图像中病害区域像素点的数量,并利用参照物标定出图像中单个像素点的尺寸,计算得到混凝土病害的面积(或长度)。采用该方法对河南省许昌市17座现役钢筋混凝土桥梁病害图像进行语义分割实验。结果表明:U-Net能以较高的精度对复杂背景下混凝土桥梁多类病害进行像素级的分类,类别平均像素准确率为90.53%,平均交并比为80.54%。使用数学形态学对语义分割图像进行优化后,计算精度明显提高,优化后的误差绝对值为0.08%~0.21%。 展开更多
关键词 混凝土桥梁 u-net 数学形态学 语义分割 定量计算 病害识别
在线阅读 下载PDF
基于大核重参U-Net的遥感影像变化检测
20
作者 吴潮宇 杨斌 《计算机工程》 北大核心 2025年第3期261-273,共13页
针对现有变化检测方法在处理高精度遥感影像时存在漏检、误检及边缘检测效果差等问题,提出了一种基于大核重参U-Net的遥感影像变化检测方法,简称RepU-Net-CD。该方法以U-Net为骨干网络,在编码端用大核重参模块代替单卷积核结构进行特征... 针对现有变化检测方法在处理高精度遥感影像时存在漏检、误检及边缘检测效果差等问题,提出了一种基于大核重参U-Net的遥感影像变化检测方法,简称RepU-Net-CD。该方法以U-Net为骨干网络,在编码端用大核重参模块代替单卷积核结构进行特征提取,实现注意力机制的全局感受野。同时,该方法利用重参技术将小核融合进大核结构中辅助训练,使网络保留捕获小感受野中细节特征的能力,从而生成多尺度特征,提高变化检测精度。在网络解码端将不同时相的特征图进行融合,得到特征差分图,再通过跳跃连接和上采样得到变化特征图,最后利用特征边缘增强模块提高网络对特征图的边缘信息关注度,进一步提高检测精度后,生成变化结果。此外,针对数据集客观存在的正负训练样本不平衡问题,采用有更高鲁棒性的混合损失函数进行网络训练。本文方法在LEVIR-CD和WHU-CD两个主流的公开数据集上进行实验验证,并与其他最新的遥感变化检测方法进行了对比。实验结果表明本文方法在许多评估指标上有显著改进,这两个数据集上的F1值分别提高到91.71%和92.60%,交并比(IoU)分别提高到84.69%和86.20%。 展开更多
关键词 变化检测 结构重参化 边缘增强 遥感影像 u-net
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部