To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not...To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not using a trained C3D video motion analysis model to extract the style of a 3D model,and applied to complement the details of geologic model lost in the dimension reduction of PCA method in this study.The 3D attention U-Net network was applied to a complex river channel sandstone reservoir to test its effects.The results show that compared with CNN-PCA method,the 3D attention U-Net network could better complement the details of geological model lost in the PCA dimension reduction,better reflect the fluid flow features in the original geologic model,and improve history matching results.展开更多
Brown adipose tissue(BAT)is a kind of adipose tissue engaging in thermoregulatory thermogenesis,metaboloregulatory thermogenesis,and secretory.Current studies have revealed that BAT activity is negatively correlated w...Brown adipose tissue(BAT)is a kind of adipose tissue engaging in thermoregulatory thermogenesis,metaboloregulatory thermogenesis,and secretory.Current studies have revealed that BAT activity is negatively correlated with adult body weight and is considered a target tissue for the treatment of obesity and other metabolic-related diseases.Additionally,the activity of BAT presents certain differences between different ages and genders.Clinically,BAT segmentation based on PET/CT data is a reliable method for brown fat research.However,most of the current BAT segmentation methods rely on the experience of doctors.In this paper,an improved U-net network,ICA-Unet,is proposed to achieve automatic and precise segmentation of BAT.First,the traditional 2D convolution layer in the encoder is replaced with a depth-wise overparameterized convolutional(Do-Conv)layer.Second,the channel attention block is introduced between the double-layer convolution.Finally,the image information entropy(IIE)block is added in the skip connections to strengthen the edge features.Furthermore,the performance of this method is evaluated on the dataset of PET/CT images from 368 patients.The results demonstrate a strong agreement between the automatic segmentation of BAT and manual annotation by experts.The average DICE coeffcient(DSC)is 0.9057,and the average Hausdorff distance is 7.2810.Experimental results suggest that the method proposed in this paper can achieve effcient and accurate automatic BAT segmentation and satisfy the clinical requirements of BAT.展开更多
Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific ...Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction.展开更多
Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention an...Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring.展开更多
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou...Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have beenidentified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions isessent...Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have beenidentified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions isessential for a comprehensive understanding of their impact on the Earth’s climate and for effectively enforcingemission regulations at a large scale. This work examines the feasibility of detecting and quantifying industrialsmoke plumes using freely accessible geo-satellite imagery. The existing systemhas so many lagging factors such aslimitations in accuracy, robustness, and efficiency and these factors hinder the effectiveness in supporting timelyresponse to industrial fires. In this work, the utilization of grayscale images is done instead of traditional colorimages for smoke plume detection. The dataset was trained through a ResNet-50 model for classification and aU-Net model for segmentation. The dataset consists of images gathered by European Space Agency’s Sentinel-2 satellite constellation from a selection of industrial sites. The acquired images predominantly capture scenesof industrial locations, some of which exhibit active smoke plume emissions. The performance of the abovementionedtechniques and models is represented by their accuracy and IOU (Intersection-over-Union) metric.The images are first trained on the basic RGB images where their respective classification using the ResNet-50model results in an accuracy of 94.4% and segmentation using the U-Net Model with an IOU metric of 0.5 andaccuracy of 94% which leads to the detection of exact patches where the smoke plume has occurred. This work hastrained the classification model on grayscale images achieving a good increase in accuracy of 96.4%.展开更多
为使桥梁病害检测更加高效、客观和智能,提出一种自动识别并定量计算混凝土病害尺寸的方法。该方法采用视觉几何组网络(Visual Geometry Group Network,VGG)作为U形网络(U-Net)的主干网络,对混凝土病害(剥落、裂缝和露筋)图像进行语义分...为使桥梁病害检测更加高效、客观和智能,提出一种自动识别并定量计算混凝土病害尺寸的方法。该方法采用视觉几何组网络(Visual Geometry Group Network,VGG)作为U形网络(U-Net)的主干网络,对混凝土病害(剥落、裂缝和露筋)图像进行语义分割,采用数学形态学算法对图像中的病害区域进行优化。通过MATLAB软件计算得到优化后的分割图像中病害区域像素点的数量,并利用参照物标定出图像中单个像素点的尺寸,计算得到混凝土病害的面积(或长度)。采用该方法对河南省许昌市17座现役钢筋混凝土桥梁病害图像进行语义分割实验。结果表明:U-Net能以较高的精度对复杂背景下混凝土桥梁多类病害进行像素级的分类,类别平均像素准确率为90.53%,平均交并比为80.54%。使用数学形态学对语义分割图像进行优化后,计算精度明显提高,优化后的误差绝对值为0.08%~0.21%。展开更多
基金Supported by the China National Oil and Gas Major Project(2016ZX05010-003)PetroChina Science and Technology Major Project(2019B1210,2021DJ1201).
文摘To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not using a trained C3D video motion analysis model to extract the style of a 3D model,and applied to complement the details of geologic model lost in the dimension reduction of PCA method in this study.The 3D attention U-Net network was applied to a complex river channel sandstone reservoir to test its effects.The results show that compared with CNN-PCA method,the 3D attention U-Net network could better complement the details of geological model lost in the PCA dimension reduction,better reflect the fluid flow features in the original geologic model,and improve history matching results.
基金supported in part by the National Natural Science Foundation of China(61701403,82122033,81871379)National Key Research and Development Program of China(2016YFC0103804,2019YFC1521103,2020YFC1523301,2019YFC-1521102)+3 种基金Key R&D Projects in Shaanxi Province(2019ZDLSF07-02,2019ZDLGY10-01)Key R&D Projects in Qinghai Province(2020-SF-143)China Post-doctoral Science Foundation(2018M643719)Young Talent Support Program of the Shaanxi Association for Science and Technology(20190107).
文摘Brown adipose tissue(BAT)is a kind of adipose tissue engaging in thermoregulatory thermogenesis,metaboloregulatory thermogenesis,and secretory.Current studies have revealed that BAT activity is negatively correlated with adult body weight and is considered a target tissue for the treatment of obesity and other metabolic-related diseases.Additionally,the activity of BAT presents certain differences between different ages and genders.Clinically,BAT segmentation based on PET/CT data is a reliable method for brown fat research.However,most of the current BAT segmentation methods rely on the experience of doctors.In this paper,an improved U-net network,ICA-Unet,is proposed to achieve automatic and precise segmentation of BAT.First,the traditional 2D convolution layer in the encoder is replaced with a depth-wise overparameterized convolutional(Do-Conv)layer.Second,the channel attention block is introduced between the double-layer convolution.Finally,the image information entropy(IIE)block is added in the skip connections to strengthen the edge features.Furthermore,the performance of this method is evaluated on the dataset of PET/CT images from 368 patients.The results demonstrate a strong agreement between the automatic segmentation of BAT and manual annotation by experts.The average DICE coeffcient(DSC)is 0.9057,and the average Hausdorff distance is 7.2810.Experimental results suggest that the method proposed in this paper can achieve effcient and accurate automatic BAT segmentation and satisfy the clinical requirements of BAT.
基金Project(2020YFC2008605)supported by the National Key Research and Development Project of ChinaProject(52072412)supported by the National Natural Science Foundation of ChinaProject(2021JJ30359)supported by the Natural Science Foundation of Hunan Province,China。
文摘Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction.
基金Projects(42174170,41874145,72088101)supported by the National Natural Science Foundation of ChinaProject(CX20200228)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China。
文摘Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring.
文摘Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
文摘Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have beenidentified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions isessential for a comprehensive understanding of their impact on the Earth’s climate and for effectively enforcingemission regulations at a large scale. This work examines the feasibility of detecting and quantifying industrialsmoke plumes using freely accessible geo-satellite imagery. The existing systemhas so many lagging factors such aslimitations in accuracy, robustness, and efficiency and these factors hinder the effectiveness in supporting timelyresponse to industrial fires. In this work, the utilization of grayscale images is done instead of traditional colorimages for smoke plume detection. The dataset was trained through a ResNet-50 model for classification and aU-Net model for segmentation. The dataset consists of images gathered by European Space Agency’s Sentinel-2 satellite constellation from a selection of industrial sites. The acquired images predominantly capture scenesof industrial locations, some of which exhibit active smoke plume emissions. The performance of the abovementionedtechniques and models is represented by their accuracy and IOU (Intersection-over-Union) metric.The images are first trained on the basic RGB images where their respective classification using the ResNet-50model results in an accuracy of 94.4% and segmentation using the U-Net Model with an IOU metric of 0.5 andaccuracy of 94% which leads to the detection of exact patches where the smoke plume has occurred. This work hastrained the classification model on grayscale images achieving a good increase in accuracy of 96.4%.
文摘为使桥梁病害检测更加高效、客观和智能,提出一种自动识别并定量计算混凝土病害尺寸的方法。该方法采用视觉几何组网络(Visual Geometry Group Network,VGG)作为U形网络(U-Net)的主干网络,对混凝土病害(剥落、裂缝和露筋)图像进行语义分割,采用数学形态学算法对图像中的病害区域进行优化。通过MATLAB软件计算得到优化后的分割图像中病害区域像素点的数量,并利用参照物标定出图像中单个像素点的尺寸,计算得到混凝土病害的面积(或长度)。采用该方法对河南省许昌市17座现役钢筋混凝土桥梁病害图像进行语义分割实验。结果表明:U-Net能以较高的精度对复杂背景下混凝土桥梁多类病害进行像素级的分类,类别平均像素准确率为90.53%,平均交并比为80.54%。使用数学形态学对语义分割图像进行优化后,计算精度明显提高,优化后的误差绝对值为0.08%~0.21%。