The main purpose of this paper is to investigate global asymptotic stability of the zero solution of the fifth-order nonlinear delay differential equation on the following form By constructing a Lyapunov functional, s...The main purpose of this paper is to investigate global asymptotic stability of the zero solution of the fifth-order nonlinear delay differential equation on the following form By constructing a Lyapunov functional, sufficient conditions for the stability of the zero solution of this equation are established.展开更多
This paper obtained some theorems that can ascertain the zero solution of functional differential equations are extremely uniformly stable, extremely asymptotically stable or extremely uniformly asymptotically stable....This paper obtained some theorems that can ascertain the zero solution of functional differential equations are extremely uniformly stable, extremely asymptotically stable or extremely uniformly asymptotically stable. In the obtained theorems, the derivative of Liapunov function on t along the solutions of functional differential equations is not required to be always negative, especially, it may be even positive.展开更多
The finite-time stability and the finite-time contractive stability of solutions for nonlinear fractional differential equations with bounded delay are investigated. The derivative of Lyapunov function along solutions...The finite-time stability and the finite-time contractive stability of solutions for nonlinear fractional differential equations with bounded delay are investigated. The derivative of Lyapunov function along solutions of the considered system is defined in terms of the Caputo fractional Dini derivative. Based on the Lyapunov-Razumikhin method, several sufficient criteria are established to guarantee the finite-time stability and the finite-time contractive stability of solutions for the related systems. An example is provided to illustrate the effectiveness of the obtained results.展开更多
This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment ...This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.展开更多
By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established re...By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.展开更多
In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the eq...In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the equations. The conditions stated complement previously known results. Example is also given to illustrate the correctness and significance of the result obtained.展开更多
Without the linear growth condition, by the use of Lyapunov function, this paper estab- lishes the existence^and-uniqueness theorem of global solutions to a class of neutral stochastic differen- tim equations with unb...Without the linear growth condition, by the use of Lyapunov function, this paper estab- lishes the existence^and-uniqueness theorem of global solutions to a class of neutral stochastic differen- tim equations with unbounded delay, and examines the pathwise stability of this solution with general decay rate. As an application of our results, this paper also considers in detail a two-dimensional unbounded delay neutral stochastic differential equation with polynomial coefficients.展开更多
The nonlinear vector differential equation of the sixth order with constant delay is considered in this article. New criteria for instability of the zero solution are established using the Lyapunov-Krasovskii function...The nonlinear vector differential equation of the sixth order with constant delay is considered in this article. New criteria for instability of the zero solution are established using the Lyapunov-Krasovskii functional approach and the differential inequality techniques. The result of this article improves previously known results.展开更多
Streptococcus suis(S.suis)is a major disease impacting pig farming globally.It can also be transferred to humans by eating raw pork.A comprehensive study was recently carried out to determine the indices throughmultip...Streptococcus suis(S.suis)is a major disease impacting pig farming globally.It can also be transferred to humans by eating raw pork.A comprehensive study was recently carried out to determine the indices throughmultiple geographic regions in China.Methods:The well-posed theorems were employed to conduct a thorough analysis of the model’s feasible features,including positivity,boundedness equilibria,reproduction number,and parameter sensitivity.Stochastic Euler,Runge Kutta,and EulerMaruyama are some of the numerical techniques used to replicate the behavior of the streptococcus suis infection in the pig population.However,the dynamic qualities of the suggested model cannot be restored using these techniques.Results:For the stochastic delay differential equations of the model,the non-standard finite difference approach in the sense of stochasticity is developed to avoid several problems such as negativity,unboundedness,inconsistency,and instability of the findings.Results from traditional stochastic methods either converge conditionally or diverge over time.The stochastic non-negative step size convergence nonstandard finite difference(NSFD)method unconditionally converges to the model’s true states.Conclusions:This study improves our understanding of the dynamics of streptococcus suis infection using versions of stochastic with delay approaches and opens up new avenues for the study of cognitive processes and neuronal analysis.Theplotted interaction behaviour and new solution comparison profiles.展开更多
We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their...We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.展开更多
This paper deals with the problem on the stability for zero solution to a class of functional differential equations with infinite delays. We give up the usual confine to the boundedness of the coefficient matrix of t...This paper deals with the problem on the stability for zero solution to a class of functional differential equations with infinite delays. We give up the usual confine to the boundedness of the coefficient matrix of the equations and obtain some new results which guarantee the stability and asymptotic stability for zero solution of the equations. The results are of simple forms, easily checked and applicable, and extend the relative results of [1].展开更多
A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified the...A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.展开更多
This paper deals with the problems on the existence and uniqueness and stability of almost periodic solutions for functional differential equations with infinite delays.The author obtains some sufficient conditions wh...This paper deals with the problems on the existence and uniqueness and stability of almost periodic solutions for functional differential equations with infinite delays.The author obtains some sufficient conditions which ganrantee the existence and uniqueness and stability of almost periodic solutions with module containment.The results extend all the results of the paper and solve the two open problems proposed in under much weaker conditions than that proposed in.展开更多
A series of eontractivity and exponential stability results for the solutions to nonlinear neutral functional differential equations (NFDEs) in Banach spaces are obtained, which provide unified theoretical foundatio...A series of eontractivity and exponential stability results for the solutions to nonlinear neutral functional differential equations (NFDEs) in Banach spaces are obtained, which provide unified theoretical foundation for the contractivity analysis of solutions to nonlinear problems in functional differential equations (FDEs), neutral delay differential equations (NDDEs) and NFDEs of other types which appear in practice.展开更多
In this paper, the boundedness and the stability of solutions for a class of fourth order nonlinear differential equations are studied by using the method of Liapunov function. The sufficient conditions which guarante...In this paper, the boundedness and the stability of solutions for a class of fourth order nonlinear differential equations are studied by using the method of Liapunov function. The sufficient conditions which guarantee the boundedness and stability of solutions are preasented.展开更多
In this paper, we investigate stochastic asymptotic stability of the zero solution for certain third-order nonlinear stochastic delay differential equations by constructing Lyapunov functionals.
Presents the stability analysis of theoretical solutions for a class of nonlinear neutral delay-differential equations (NDDE). Discussion on the numerical analogous results of the natural Runge-Kutta (NRK) methods for...Presents the stability analysis of theoretical solutions for a class of nonlinear neutral delay-differential equations (NDDE). Discussion on the numerical analogous results of the natural Runge-Kutta (NRK) methods for the same class of nonlinear NDDE; Review of the related concepts and results on RK methods; Information on the asymptotic stability and global stability of the induced NRK method.展开更多
In the phase space (Ch,│·│h), by using the Liapunov functional approach, sufficient and necessary criteria for the uniform stability and uniformly asymptotic stability of solutions to neutral.functional diffe...In the phase space (Ch,│·│h), by using the Liapunov functional approach, sufficient and necessary criteria for the uniform stability and uniformly asymptotic stability of solutions to neutral.functional differential equations with infinite delay are established. We also prove that the uniformly asymptotic stability of the solutions implies the existence of the bounded ones.展开更多
For the operator D(t), we prove the inherence theorem, Theorem 2. Basing on it, we study the stability with respect to the hull for neutral functional differential equations with infinite delay. We prove that if perio...For the operator D(t), we prove the inherence theorem, Theorem 2. Basing on it, we study the stability with respect to the hull for neutral functional differential equations with infinite delay. We prove that if periodic Eq.(1) possesses the solution ξ(t) that is uniformly asymptotically stable with respect to then Eq.(1) has an mω-periodic solution p(t), for some integer m≥1. Furthermore, we prove that if the almost periodic Eq.(1) possesses the solution ξ(t) that is stable under disturbance from H+ (ξ,D,f), then Eq.(1) has an almost periodic solution.展开更多
文摘The main purpose of this paper is to investigate global asymptotic stability of the zero solution of the fifth-order nonlinear delay differential equation on the following form By constructing a Lyapunov functional, sufficient conditions for the stability of the zero solution of this equation are established.
基金National Natural Science Foundation ofChina( No.1983 10 3 0 )
文摘This paper obtained some theorems that can ascertain the zero solution of functional differential equations are extremely uniformly stable, extremely asymptotically stable or extremely uniformly asymptotically stable. In the obtained theorems, the derivative of Liapunov function on t along the solutions of functional differential equations is not required to be always negative, especially, it may be even positive.
基金Natural Science Foundation of Shanghai,China (No.19ZR1400500)。
文摘The finite-time stability and the finite-time contractive stability of solutions for nonlinear fractional differential equations with bounded delay are investigated. The derivative of Lyapunov function along solutions of the considered system is defined in terms of the Caputo fractional Dini derivative. Based on the Lyapunov-Razumikhin method, several sufficient criteria are established to guarantee the finite-time stability and the finite-time contractive stability of solutions for the related systems. An example is provided to illustrate the effectiveness of the obtained results.
文摘This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.
文摘By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.
文摘In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the equations. The conditions stated complement previously known results. Example is also given to illustrate the correctness and significance of the result obtained.
基金supported by the National Natural Science Foundation of China(61370136)the Hainan Province Science and Technology Cooperation Fund Project(KJHZ2015-36)the Hainan Province Introduced and Integrated Demonstration Projects(YJJC20130009)
基金Supported by National Natural Science Foundation of China (Grant No. 11001091) and Chinese University Research Foundation (Grant No. 2010MS129)
文摘Without the linear growth condition, by the use of Lyapunov function, this paper estab- lishes the existence^and-uniqueness theorem of global solutions to a class of neutral stochastic differen- tim equations with unbounded delay, and examines the pathwise stability of this solution with general decay rate. As an application of our results, this paper also considers in detail a two-dimensional unbounded delay neutral stochastic differential equation with polynomial coefficients.
文摘The nonlinear vector differential equation of the sixth order with constant delay is considered in this article. New criteria for instability of the zero solution are established using the Lyapunov-Krasovskii functional approach and the differential inequality techniques. The result of this article improves previously known results.
基金supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[KFU250259].
文摘Streptococcus suis(S.suis)is a major disease impacting pig farming globally.It can also be transferred to humans by eating raw pork.A comprehensive study was recently carried out to determine the indices throughmultiple geographic regions in China.Methods:The well-posed theorems were employed to conduct a thorough analysis of the model’s feasible features,including positivity,boundedness equilibria,reproduction number,and parameter sensitivity.Stochastic Euler,Runge Kutta,and EulerMaruyama are some of the numerical techniques used to replicate the behavior of the streptococcus suis infection in the pig population.However,the dynamic qualities of the suggested model cannot be restored using these techniques.Results:For the stochastic delay differential equations of the model,the non-standard finite difference approach in the sense of stochasticity is developed to avoid several problems such as negativity,unboundedness,inconsistency,and instability of the findings.Results from traditional stochastic methods either converge conditionally or diverge over time.The stochastic non-negative step size convergence nonstandard finite difference(NSFD)method unconditionally converges to the model’s true states.Conclusions:This study improves our understanding of the dynamics of streptococcus suis infection using versions of stochastic with delay approaches and opens up new avenues for the study of cognitive processes and neuronal analysis.Theplotted interaction behaviour and new solution comparison profiles.
文摘We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.
基金supported by the Natural Science Foundation of Fujian Province.
文摘This paper deals with the problem on the stability for zero solution to a class of functional differential equations with infinite delays. We give up the usual confine to the boundedness of the coefficient matrix of the equations and obtain some new results which guarantee the stability and asymptotic stability for zero solution of the equations. The results are of simple forms, easily checked and applicable, and extend the relative results of [1].
基金This work was supported by the National High-Tech ICF Committee in Chinathe National Natural Science Foundation of China(Grant No.10271100).
文摘A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.
文摘This paper deals with the problems on the existence and uniqueness and stability of almost periodic solutions for functional differential equations with infinite delays.The author obtains some sufficient conditions which ganrantee the existence and uniqueness and stability of almost periodic solutions with module containment.The results extend all the results of the paper and solve the two open problems proposed in under much weaker conditions than that proposed in.
基金Supported by the National Natural Science Foundation of China (No. 11001033)Natural Science Foundation of Hunan Province (No. 10JJ4003)+3 种基金the Open Fund Project of Key Research Institute of Philosophies and Social Sciences in Hunan Universitiesthe Major Foundation of Educational Committee of Hunan Province(No. 09A002 [2009])the Scientific Innovation Foundation for the Electric Power Youth of Chinese Society for Electrical Engineeringthe Science and Technology Planning Project of Hunan Province (No. 2010SK3026)
文摘A series of eontractivity and exponential stability results for the solutions to nonlinear neutral functional differential equations (NFDEs) in Banach spaces are obtained, which provide unified theoretical foundation for the contractivity analysis of solutions to nonlinear problems in functional differential equations (FDEs), neutral delay differential equations (NDDEs) and NFDEs of other types which appear in practice.
基金The Applied Foundation of the Education Department of Yunnan Province(0012226)
文摘In this paper, the boundedness and the stability of solutions for a class of fourth order nonlinear differential equations are studied by using the method of Liapunov function. The sufficient conditions which guarantee the boundedness and stability of solutions are preasented.
文摘In this paper, we investigate stochastic asymptotic stability of the zero solution for certain third-order nonlinear stochastic delay differential equations by constructing Lyapunov functionals.
文摘Presents the stability analysis of theoretical solutions for a class of nonlinear neutral delay-differential equations (NDDE). Discussion on the numerical analogous results of the natural Runge-Kutta (NRK) methods for the same class of nonlinear NDDE; Review of the related concepts and results on RK methods; Information on the asymptotic stability and global stability of the induced NRK method.
基金Supported by the National Natural Sciences Foundation of China (No.10171010)the Key Project on Science and Technology of the Education Ministry of China (No.Key 01061).
文摘In the phase space (Ch,│·│h), by using the Liapunov functional approach, sufficient and necessary criteria for the uniform stability and uniformly asymptotic stability of solutions to neutral.functional differential equations with infinite delay are established. We also prove that the uniformly asymptotic stability of the solutions implies the existence of the bounded ones.
文摘For the operator D(t), we prove the inherence theorem, Theorem 2. Basing on it, we study the stability with respect to the hull for neutral functional differential equations with infinite delay. We prove that if periodic Eq.(1) possesses the solution ξ(t) that is uniformly asymptotically stable with respect to then Eq.(1) has an mω-periodic solution p(t), for some integer m≥1. Furthermore, we prove that if the almost periodic Eq.(1) possesses the solution ξ(t) that is stable under disturbance from H+ (ξ,D,f), then Eq.(1) has an almost periodic solution.