A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the ...A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the state estimation accuracy of moving targets in bearing-only tracking scenarios.Firstly,the measurement information of each sensor is complemented by using triangulation under the distributed framework.Secondly,the Student-t distribution is selected to model the measurement likelihood probability density function,and the joint posteriori probability density function of the estimated variables is approximately decoupled by VBI.Finally,the estimation results of each local filter are sent to the fusion center and fed back to each local filter.The simulation results show that the proposed distributed bearing-only target tracking algorithm based on VBI in the presence of abnormal measurement noise comprehensively considers the influence of system nonlinearity and random anomaly of measurement noise,and has higher estimation accuracy and robustness than other existing algorithms in the above scenarios.展开更多
Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian netwo...Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian networks(KDBN),serving as an effective method for PIs construction,suffer from high computational load using the stochastic algorithm for inference.This study proposes a variational inference method for the KDBN for the purpose of fast inference,which avoids the timeconsuming stochastic sampling.The proposed algorithm contains two stages.The first stage involves the inference of the missing inputs by using a local linearization based variational inference,and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices.To verify the effectiveness of the proposed method,a synthetic dataset and a practical dataset of generation flow of blast furnace gas(BFG)are employed with different ratios of missing inputs.The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one.展开更多
This paper is focused on the state estimation problem for nonlinear systems with unknown statistics of measurement noise.Based on the cubature Kalman filter,we propose a new nonlinear filtering algorithm that employs ...This paper is focused on the state estimation problem for nonlinear systems with unknown statistics of measurement noise.Based on the cubature Kalman filter,we propose a new nonlinear filtering algorithm that employs a skew t distribution to characterize the asymmetry of the measurement noise.The system states and the statistics of skew t noise distribution,including the shape matrix,the scale matrix,and the degree of freedom(DOF)are estimated jointly by employing variational Bayesian(VB)inference.The proposed method is validated in a target tracking example.Results of the simulation indicate that the proposed nonlinear filter can perform satisfactorily in the presence of unknown statistics of measurement noise and outperform than the existing state-of-the-art nonlinear filters.展开更多
Efficient estimation of line spectral from quantized samples is of significant importance in information theory and signal processing,e.g.,channel estimation in energy efficient massive MIMO systems and direction of a...Efficient estimation of line spectral from quantized samples is of significant importance in information theory and signal processing,e.g.,channel estimation in energy efficient massive MIMO systems and direction of arrival estimation.The goal of this paper is to recover the line spectral as well as its corresponding parameters including the model order,frequencies and amplitudes from heavily quantized samples.To this end,we propose an efficient gridless Bayesian algorithm named VALSE-EP,which is a combination of the high resolution and low complexity gridless variational line spectral estimation(VALSE)and expectation propagation(EP).The basic idea of VALSE-EP is to iteratively approximate the challenging quantized model of line spectral estimation as a sequence of simple pseudo unquantized models,where VALSE is applied.Moreover,to obtain a benchmark of the performance of the proposed algorithm,the Cram′er Rao bound(CRB)is derived.Finally,numerical experiments on both synthetic and real data are performed,demonstrating the near CRB performance of the proposed VALSE-EP for line spectral estimation from quantized samples.展开更多
A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and rand...A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and random measurement losses.Firstly,the Inverse-Wishart(IW)distribution is chosen to model the covariance matrix of time-varying measurement noise in the cubature Kalman filter framework.Secondly,the Bernoulli random variable is introduced as the judgement factor of the measurement losses,and the Beta distribution is selected as the conjugate prior distribution of measurement loss probability to ensure that the posterior distribution and prior distribution have the same function form.Finally,the joint posterior probability density function of the estimated variables is approximately decoupled by the variational Bayesian inference,and the fixed-point iteration approach is used to update the estimated variables.The simulation results show that the proposed VBACKF algorithm considers the comprehensive effects of system nonlinearity,time-varying measurement noise and unknown measurement loss probability,moreover,effectively improves the accuracy of target state estimation in complex scene.展开更多
Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution proba...Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution probability hypothesis density(PHD) robust filtering algorithm based on variational Bayesian inference(GST-vbPHD) is proposed.Firstly,since it can accurately describe the heavy-tailed characteristics of noise with outliers,Gaussian-Student’s t mixture distribution is employed to model process noise and measurement noise respectively.Then Bernoulli random variable is introduced to correct the likelihood distribution of the mixture probability,leading hierarchical Gaussian distribution constructed by the Gaussian-Student’s t mixture distribution suitable to model non-stationary noise.Finally,the approximate solutions including target weights,measurement noise covariance and state estimation error covariance are obtained according to variational Bayesian inference approach.The simulation results show that,in the heavy-tailed noise environment,the proposed algorithm leads to strong improvements over the traditional PHD filter and the Student’s t distribution PHD filter.展开更多
Due to the increasing demand for goods movement,externalities from freight mobility have attracted much concern among local citizens and policymakers.Freight truck-related crash is one of these externalities and impac...Due to the increasing demand for goods movement,externalities from freight mobility have attracted much concern among local citizens and policymakers.Freight truck-related crash is one of these externalities and impacts urban freight transportation most drastically.Previous studies have mainly focused on correlation analyses of influencing factors based on crash density/count data,but have paid little attention to the inherent uncertainties of freight truck-related crashes(FTCs)from a spatial perspective.While establishing an interpretable analysis model for freight truck-related accidents that consid-ers uncertainties is of great significance for promoting the robust development of urban freight transportation systems.Hence,this study proposes the concept of FTC hazard(FTCH),and employs the Bayesian neural network(BNN)model based on stochastic varia-tional inference to model uncertainty.Considering the difficulty in interpreting deep learning-based models,this study introduces the local interpretable modelagnostic expla-nation(LIME)model into the analysis framework to explain the results of the neural net-work model.This study then verifies the feasibility of the proposed analysis framework using data from California from 2011 to 2020.Results show that FTCHs can be effectively modeled by predicting confidence intervals for effects of built environment factors,in par-ticular demographics,land use,and road network structure.Results based on LIME values indicate the spatial heterogeneity in influence mechanisms on FTCHs between areas within the metropolitan regions and alongside the freeways.These findings may help transport planners and logistic managers develop more effective measures to avoid potential nega-tive effects brought by FTCHs in local communities.展开更多
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,...A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.展开更多
The estimation of sparse underwater acoustic(UWA)channels can be regarded as an inference problem involving hidden variables within the Bayesian framework.While the classical sparse Bayesian learning(SBL),derived thro...The estimation of sparse underwater acoustic(UWA)channels can be regarded as an inference problem involving hidden variables within the Bayesian framework.While the classical sparse Bayesian learning(SBL),derived through the expectation maximization(EM)algorithm,has been widely employed for UWA channel estimation,it still differs from the real posterior expectation of channels.In this paper,we propose an approach that combines variational inference(VI)and Markov chain Monte Carlo(MCMC)methods to provide a more accurate posterior estimation.Specifically,the SBL is first re-derived with VI,allowing us to replace the posterior distribution of the hidden variables with a variational distribution.Then,we determine the full conditional probability distribution for each variable in the variational distribution and then iteratively perform random Gibbs sampling in MCMC to converge the Markov chain.The results of simulation and experiment indicate that our estimation method achieves lower mean square error and bit error rate compared to the classic SBL approach.Additionally,it demonstrates an acceptable convergence speed.展开更多
针对测距仪(distance measure equipment,DME)信号严重干扰L频段数字航空通信系统(L-band digital aviation communication system,L-DACS)前向链路接收机的问题,提出基于相关稀疏变分贝叶斯(correlated sparse variational Bayesian,cS...针对测距仪(distance measure equipment,DME)信号严重干扰L频段数字航空通信系统(L-band digital aviation communication system,L-DACS)前向链路接收机的问题,提出基于相关稀疏变分贝叶斯(correlated sparse variational Bayesian,cSVB)算法的DME脉冲干扰抑制方法。所提方法利用L-DACS系统正交频分复用(orthogonal frequency division multiplexing,OFDM)接收机的空子载波信息构建接收信号的压缩感知方程;然后,根据cSVB算法进行三层次贝叶斯信号建模,最后选择了两种变体算法重构DME干扰信号,并将其从时域接收信号中去除。理论分析与仿真结果表明,所提出的干扰抑制方法可以充分利用信号先验信息,进一步降低DME干扰信号估计的归一化均方误差,有效改善L-DACS系统的误码性能,提高传输可靠性。展开更多
基金Supported by the Science and Technology Key Project of Science and Technology Department of Henan Province(No.252102211041)the Key Research and Development Projects of Henan Province(No.231111212500).
文摘A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the state estimation accuracy of moving targets in bearing-only tracking scenarios.Firstly,the measurement information of each sensor is complemented by using triangulation under the distributed framework.Secondly,the Student-t distribution is selected to model the measurement likelihood probability density function,and the joint posteriori probability density function of the estimated variables is approximately decoupled by VBI.Finally,the estimation results of each local filter are sent to the fusion center and fed back to each local filter.The simulation results show that the proposed distributed bearing-only target tracking algorithm based on VBI in the presence of abnormal measurement noise comprehensively considers the influence of system nonlinearity and random anomaly of measurement noise,and has higher estimation accuracy and robustness than other existing algorithms in the above scenarios.
基金supported by the National Key Research andDevelopment Program of China(2017YFA0700300)the National Natural Sciences Foundation of China(61533005,61703071,61603069)。
文摘Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian networks(KDBN),serving as an effective method for PIs construction,suffer from high computational load using the stochastic algorithm for inference.This study proposes a variational inference method for the KDBN for the purpose of fast inference,which avoids the timeconsuming stochastic sampling.The proposed algorithm contains two stages.The first stage involves the inference of the missing inputs by using a local linearization based variational inference,and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices.To verify the effectiveness of the proposed method,a synthetic dataset and a practical dataset of generation flow of blast furnace gas(BFG)are employed with different ratios of missing inputs.The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one.
基金This work was supported in part by National Natural Science Foundation of China under Grants 62103167 and 61833007in part by the Natural Science Foundation of Jiangsu Province under Grant BK20210451.
文摘This paper is focused on the state estimation problem for nonlinear systems with unknown statistics of measurement noise.Based on the cubature Kalman filter,we propose a new nonlinear filtering algorithm that employs a skew t distribution to characterize the asymmetry of the measurement noise.The system states and the statistics of skew t noise distribution,including the shape matrix,the scale matrix,and the degree of freedom(DOF)are estimated jointly by employing variational Bayesian(VB)inference.The proposed method is validated in a target tracking example.Results of the simulation indicate that the proposed nonlinear filter can perform satisfactorily in the presence of unknown statistics of measurement noise and outperform than the existing state-of-the-art nonlinear filters.
基金supported by National Natural Science Foundation of China(No.61901415)。
文摘Efficient estimation of line spectral from quantized samples is of significant importance in information theory and signal processing,e.g.,channel estimation in energy efficient massive MIMO systems and direction of arrival estimation.The goal of this paper is to recover the line spectral as well as its corresponding parameters including the model order,frequencies and amplitudes from heavily quantized samples.To this end,we propose an efficient gridless Bayesian algorithm named VALSE-EP,which is a combination of the high resolution and low complexity gridless variational line spectral estimation(VALSE)and expectation propagation(EP).The basic idea of VALSE-EP is to iteratively approximate the challenging quantized model of line spectral estimation as a sequence of simple pseudo unquantized models,where VALSE is applied.Moreover,to obtain a benchmark of the performance of the proposed algorithm,the Cram′er Rao bound(CRB)is derived.Finally,numerical experiments on both synthetic and real data are performed,demonstrating the near CRB performance of the proposed VALSE-EP for line spectral estimation from quantized samples.
基金Supported by the National Natural Science Foundation of China(No.61976080)the Science and Technology Key Project of Science and TechnologyDepartment of Henan Province(No.212102310298)+1 种基金the Academic Degrees&Graduate Education Reform Project of Henan Province(No.2021SJGLX195Y)the Innovation and Quality Improvement Project for Graduate Education of Henan University(No.SYL20010101)。
文摘A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and random measurement losses.Firstly,the Inverse-Wishart(IW)distribution is chosen to model the covariance matrix of time-varying measurement noise in the cubature Kalman filter framework.Secondly,the Bernoulli random variable is introduced as the judgement factor of the measurement losses,and the Beta distribution is selected as the conjugate prior distribution of measurement loss probability to ensure that the posterior distribution and prior distribution have the same function form.Finally,the joint posterior probability density function of the estimated variables is approximately decoupled by the variational Bayesian inference,and the fixed-point iteration approach is used to update the estimated variables.The simulation results show that the proposed VBACKF algorithm considers the comprehensive effects of system nonlinearity,time-varying measurement noise and unknown measurement loss probability,moreover,effectively improves the accuracy of target state estimation in complex scene.
基金Supported by the National Natural Science Foundation of China(No.61976080)the Science and Technology Key Project of Science and Technology Department of Henan Province(No.212102310298)the Innovation and Quality Improvement Project for Graduate Education of Henan University(No.SYL20010101)。
文摘Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution probability hypothesis density(PHD) robust filtering algorithm based on variational Bayesian inference(GST-vbPHD) is proposed.Firstly,since it can accurately describe the heavy-tailed characteristics of noise with outliers,Gaussian-Student’s t mixture distribution is employed to model process noise and measurement noise respectively.Then Bernoulli random variable is introduced to correct the likelihood distribution of the mixture probability,leading hierarchical Gaussian distribution constructed by the Gaussian-Student’s t mixture distribution suitable to model non-stationary noise.Finally,the approximate solutions including target weights,measurement noise covariance and state estimation error covariance are obtained according to variational Bayesian inference approach.The simulation results show that,in the heavy-tailed noise environment,the proposed algorithm leads to strong improvements over the traditional PHD filter and the Student’s t distribution PHD filter.
基金supported by the Shanghai Sailing Program of China(ID:20YF1451700)the Science and Technology Commission of Shanghai Municipality of China(Nos.23692119000&21692112203)the Fundamental Research Funds for the Central Universities of China(No.2023-4-YB-01).
文摘Due to the increasing demand for goods movement,externalities from freight mobility have attracted much concern among local citizens and policymakers.Freight truck-related crash is one of these externalities and impacts urban freight transportation most drastically.Previous studies have mainly focused on correlation analyses of influencing factors based on crash density/count data,but have paid little attention to the inherent uncertainties of freight truck-related crashes(FTCs)from a spatial perspective.While establishing an interpretable analysis model for freight truck-related accidents that consid-ers uncertainties is of great significance for promoting the robust development of urban freight transportation systems.Hence,this study proposes the concept of FTC hazard(FTCH),and employs the Bayesian neural network(BNN)model based on stochastic varia-tional inference to model uncertainty.Considering the difficulty in interpreting deep learning-based models,this study introduces the local interpretable modelagnostic expla-nation(LIME)model into the analysis framework to explain the results of the neural net-work model.This study then verifies the feasibility of the proposed analysis framework using data from California from 2011 to 2020.Results show that FTCHs can be effectively modeled by predicting confidence intervals for effects of built environment factors,in par-ticular demographics,land use,and road network structure.Results based on LIME values indicate the spatial heterogeneity in influence mechanisms on FTCHs between areas within the metropolitan regions and alongside the freeways.These findings may help transport planners and logistic managers develop more effective measures to avoid potential nega-tive effects brought by FTCHs in local communities.
文摘A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.
基金funded by the Excellent Youth Science Fund of Heilongjiang Province(Grant No.YQ2022F001).
文摘The estimation of sparse underwater acoustic(UWA)channels can be regarded as an inference problem involving hidden variables within the Bayesian framework.While the classical sparse Bayesian learning(SBL),derived through the expectation maximization(EM)algorithm,has been widely employed for UWA channel estimation,it still differs from the real posterior expectation of channels.In this paper,we propose an approach that combines variational inference(VI)and Markov chain Monte Carlo(MCMC)methods to provide a more accurate posterior estimation.Specifically,the SBL is first re-derived with VI,allowing us to replace the posterior distribution of the hidden variables with a variational distribution.Then,we determine the full conditional probability distribution for each variable in the variational distribution and then iteratively perform random Gibbs sampling in MCMC to converge the Markov chain.The results of simulation and experiment indicate that our estimation method achieves lower mean square error and bit error rate compared to the classic SBL approach.Additionally,it demonstrates an acceptable convergence speed.
文摘针对测距仪(distance measure equipment,DME)信号严重干扰L频段数字航空通信系统(L-band digital aviation communication system,L-DACS)前向链路接收机的问题,提出基于相关稀疏变分贝叶斯(correlated sparse variational Bayesian,cSVB)算法的DME脉冲干扰抑制方法。所提方法利用L-DACS系统正交频分复用(orthogonal frequency division multiplexing,OFDM)接收机的空子载波信息构建接收信号的压缩感知方程;然后,根据cSVB算法进行三层次贝叶斯信号建模,最后选择了两种变体算法重构DME干扰信号,并将其从时域接收信号中去除。理论分析与仿真结果表明,所提出的干扰抑制方法可以充分利用信号先验信息,进一步降低DME干扰信号估计的归一化均方误差,有效改善L-DACS系统的误码性能,提高传输可靠性。