Mitigating increasing cyberattack incidents may require strategies such as reinforcing organizations’ networks with Honeypots and effectively analyzing attack traffic for detection of zero-day attacks and vulnerabili...Mitigating increasing cyberattack incidents may require strategies such as reinforcing organizations’ networks with Honeypots and effectively analyzing attack traffic for detection of zero-day attacks and vulnerabilities. To effectively detect and mitigate cyberattacks, both computerized and visual analyses are typically required. However, most security analysts are not adequately trained in visualization principles and/or methods, which is required for effective visual perception of useful attack information hidden in attack data. Additionally, Honeypot has proven useful in cyberattack research, but no studies have comprehensively investigated visualization practices in the field. In this paper, we reviewed visualization practices and methods commonly used in the discovery and communication of attack patterns based on Honeypot network traffic data. Using the PRISMA methodology, we identified and screened 218 papers and evaluated only 37 papers having a high impact. Most Honeypot papers conducted summary statistics of Honeypot data based on static data metrics such as IP address, port, and packet size. They visually analyzed Honeypot attack data using simple graphical methods (such as line, bar, and pie charts) that tend to hide useful attack information. Furthermore, only a few papers conducted extended attack analysis, and commonly visualized attack data using scatter and linear plots. Papers rarely included simple yet sophisticated graphical methods, such as box plots and histograms, which allow for critical evaluation of analysis results. While a significant number of automated visualization tools have incorporated visualization standards by default, the construction of effective and expressive graphical methods for easy pattern discovery and explainable insights still requires applied knowledge and skill of visualization principles and tools, and occasionally, an interdisciplinary collaboration with peers. We, therefore, suggest the need, going forward, for non-classical graphical methods for visualizing attack patterns and communicating analysis results. We also recommend training investigators in visualization principles and standards for effective visual perception and presentation.展开更多
A simple visual method for DNA detection during the formation of gold nanoparticles(AuNPs) was developed based on different electrostatic properties of single strand DNA(ssDNA) and double strand DNA(dsDNA).Since the s...A simple visual method for DNA detection during the formation of gold nanoparticles(AuNPs) was developed based on different electrostatic properties of single strand DNA(ssDNA) and double strand DNA(dsDNA).Since the ssDNA is easy to bind to AuNPs due to its exposed bases which could prevent saltinduced aggregation of AuNPs.The dsDNA always present negative charge because its negatively charged phosphate backbone is exposed.In this case,the dsDNA could disturb the adsorption between dsDNA and AuNPs and result in non-aggregation of AuNPs.After hybridization,chloroauric acid and ascorbic acid were added to the mixture solution,and the solution changed to red immediately and turned to purple in10 min in the present of target DNA.TEM results confirmed that the change of color stemed from aggregation of AuNPs.In order to obtain accurate results by naked eye,the DNA detection assay should be conducted under pH 7.0.展开更多
A new method for visualizing sound propagation in solids and liquids is described in this paper. The method can show the sound propagation process dynamically in two dimensions. Compared with Schlieren method and dyna...A new method for visualizing sound propagation in solids and liquids is described in this paper. The method can show the sound propagation process dynamically in two dimensions. Compared with Schlieren method and dynamic photo-elastic method, this method cannot only show the sound field distribution in liquid and solid at different time moments, but also can be applied to non-transparent solid. In addition, it does not strictly require small residual stress of the sample. The sample can, therefore, be easily made. Because the acoustic field is obtained by indirect measurements, the recording can be affected by the after-shock of the receiving sensor and is prone to the influence of the direct wave of the liquid. Putting an aluminum plate into a liquid, we recorded the compression wave, shear wave and surface wave in the aluminum and, in the liquid we also recorded the direct wave and three head waves, which are directly coupled with the compression wave, shear wave and surface wave respectively. The recording clearly depicts the coupling relationship of the sound waves through the interface between the aluminum and the liquid. Putting a plexiglass into a liquid, we also recorded the sound waves in the plexiglass and the coupling relationship between the sound waves in the two mediums.展开更多
To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coa...To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coaxial optical path is presented. The target image is obtained using double cameras with coaxial optical path. Since there is imaging optical path difference between the cameras, the images are different. In comparison of the image differences, the target range could be reversed. The principle of the ranging method and the ranging model are described. The relationship among parameters in the ranging process is analyzed quantitatively. Meanwhile,the system composition and technical realization scheme are also presented. Also, the principle of the method is verified by the equivalent experiment. The experimental results show that the design scheme is correct and feasible with good robustness. Generally, the ranging error is less than 10% with good convergence. The optical path is designed in a re-entrant mode to reduce the volume and weight of the system. Through the coaxial design,the visual passive range of the targets with any posture can be obtained in real time. The system can be widely used in electro-optical countermeasure and concealed photoelectric detection.展开更多
The study of marine data visualization is of great value. Marine data, due to its large scale, random variation and multiresolution in nature, are hard to be visualized and analyzed. Nowadays, constructing an ocean mo...The study of marine data visualization is of great value. Marine data, due to its large scale, random variation and multiresolution in nature, are hard to be visualized and analyzed. Nowadays, constructing an ocean model and visualizing model results have become some of the most important research topics of ‘Digital Ocean'. In this paper, a spherical ray casting method is developed to improve the traditional ray-casting algorithm and to make efficient use of GPUs. Aiming at the ocean current data, a 3D view-dependent line integral convolution method is used, in which the spatial frequency is adapted according to the distance from a camera. The study is based on a 3D virtual reality and visualization engine, namely the VV-Ocean. Some interactive operations are also provided to highlight the interesting structures and the characteristics of volumetric data. Finally, the marine data gathered in the East China Sea are displayed and analyzed. The results show that the method meets the requirements of real-time and interactive rendering.展开更多
法医损伤分析在法医学领域具有重要意义,但损伤形成过程的复杂性和个体差异使损伤分析对专业性要求极高。有限元方法(finite element method, FEM)以其广泛的适用性、可控的精确度和高效的计算能力,结合可视化,在法庭科学领域展现出巨...法医损伤分析在法医学领域具有重要意义,但损伤形成过程的复杂性和个体差异使损伤分析对专业性要求极高。有限元方法(finite element method, FEM)以其广泛的适用性、可控的精确度和高效的计算能力,结合可视化,在法庭科学领域展现出巨大的应用潜力。本文通过文献分析,介绍FEM的基本原理,探讨其在交通事故、枪击、工具致伤、高坠损伤分析中的应用情况,通过分析各应用场景与碰撞部位的模拟参数、模拟结果及研究侧重,评估FEM在法医损伤分析上的可行性、局限性,为法医损伤分析提供参考和技术途径。展开更多
视觉即时定位与建图(visual simultaneous localization and mapping,VSLAM)技术利用视觉传感器分析图像信息,使机器人在未知环境中实现自主定位和实时三维地图构建,是机器人导航和自动驾驶等任务的关键。为了给研究人员提供有价值的参...视觉即时定位与建图(visual simultaneous localization and mapping,VSLAM)技术利用视觉传感器分析图像信息,使机器人在未知环境中实现自主定位和实时三维地图构建,是机器人导航和自动驾驶等任务的关键。为了给研究人员提供有价值的参考,梳理了VSLAM的研究现状和最新进展。首先,深入探讨了机器人视觉SLAM算法,根据不同的传感器类型,概述了六种主流的视觉SLAM算法。对这些算法的基本原理进行系统分析,并对其中的经典算法进行了精炼总结。进一步地,将视觉SLAM算法分类为基于特征、基于直接法和基于学习的算法三大类,并详细探讨了各自的优缺点。最后,展望了视觉SLAM技术未来的发展方向,重点关注了深度学习、多传感器融合及实时性能优化等关键研究领域。展开更多
文摘Mitigating increasing cyberattack incidents may require strategies such as reinforcing organizations’ networks with Honeypots and effectively analyzing attack traffic for detection of zero-day attacks and vulnerabilities. To effectively detect and mitigate cyberattacks, both computerized and visual analyses are typically required. However, most security analysts are not adequately trained in visualization principles and/or methods, which is required for effective visual perception of useful attack information hidden in attack data. Additionally, Honeypot has proven useful in cyberattack research, but no studies have comprehensively investigated visualization practices in the field. In this paper, we reviewed visualization practices and methods commonly used in the discovery and communication of attack patterns based on Honeypot network traffic data. Using the PRISMA methodology, we identified and screened 218 papers and evaluated only 37 papers having a high impact. Most Honeypot papers conducted summary statistics of Honeypot data based on static data metrics such as IP address, port, and packet size. They visually analyzed Honeypot attack data using simple graphical methods (such as line, bar, and pie charts) that tend to hide useful attack information. Furthermore, only a few papers conducted extended attack analysis, and commonly visualized attack data using scatter and linear plots. Papers rarely included simple yet sophisticated graphical methods, such as box plots and histograms, which allow for critical evaluation of analysis results. While a significant number of automated visualization tools have incorporated visualization standards by default, the construction of effective and expressive graphical methods for easy pattern discovery and explainable insights still requires applied knowledge and skill of visualization principles and tools, and occasionally, an interdisciplinary collaboration with peers. We, therefore, suggest the need, going forward, for non-classical graphical methods for visualizing attack patterns and communicating analysis results. We also recommend training investigators in visualization principles and standards for effective visual perception and presentation.
基金financially supported by the National Key Research and Development Program of China (No.2017YFA0205301)the National Natural Science Foundation of China (Nos.61527806, 81902153 and 61871180)+2 种基金the Natural Science Foundation of Hunan Province (No.2017JJ2069)the Hunan Key Research Project (No.2017SK2174)the Programs for Changjiang Scholars and Innovative Research Team in University (No.IRT_15R13)
文摘A simple visual method for DNA detection during the formation of gold nanoparticles(AuNPs) was developed based on different electrostatic properties of single strand DNA(ssDNA) and double strand DNA(dsDNA).Since the ssDNA is easy to bind to AuNPs due to its exposed bases which could prevent saltinduced aggregation of AuNPs.The dsDNA always present negative charge because its negatively charged phosphate backbone is exposed.In this case,the dsDNA could disturb the adsorption between dsDNA and AuNPs and result in non-aggregation of AuNPs.After hybridization,chloroauric acid and ascorbic acid were added to the mixture solution,and the solution changed to red immediately and turned to purple in10 min in the present of target DNA.TEM results confirmed that the change of color stemed from aggregation of AuNPs.In order to obtain accurate results by naked eye,the DNA detection assay should be conducted under pH 7.0.
基金Tianjin University's 985 Talent Plan, Key Project Science and Technology from Zhongyuan Oil Field and National Natural Science Foundation of China (50479070).
文摘A new method for visualizing sound propagation in solids and liquids is described in this paper. The method can show the sound propagation process dynamically in two dimensions. Compared with Schlieren method and dynamic photo-elastic method, this method cannot only show the sound field distribution in liquid and solid at different time moments, but also can be applied to non-transparent solid. In addition, it does not strictly require small residual stress of the sample. The sample can, therefore, be easily made. Because the acoustic field is obtained by indirect measurements, the recording can be affected by the after-shock of the receiving sensor and is prone to the influence of the direct wave of the liquid. Putting an aluminum plate into a liquid, we recorded the compression wave, shear wave and surface wave in the aluminum and, in the liquid we also recorded the direct wave and three head waves, which are directly coupled with the compression wave, shear wave and surface wave respectively. The recording clearly depicts the coupling relationship of the sound waves through the interface between the aluminum and the liquid. Putting a plexiglass into a liquid, we also recorded the sound waves in the plexiglass and the coupling relationship between the sound waves in the two mediums.
基金Supported by the National Basic Research Program of China under Grant No 2014CB340102
文摘To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coaxial optical path is presented. The target image is obtained using double cameras with coaxial optical path. Since there is imaging optical path difference between the cameras, the images are different. In comparison of the image differences, the target range could be reversed. The principle of the ranging method and the ranging model are described. The relationship among parameters in the ranging process is analyzed quantitatively. Meanwhile,the system composition and technical realization scheme are also presented. Also, the principle of the method is verified by the equivalent experiment. The experimental results show that the design scheme is correct and feasible with good robustness. Generally, the ranging error is less than 10% with good convergence. The optical path is designed in a re-entrant mode to reduce the volume and weight of the system. Through the coaxial design,the visual passive range of the targets with any posture can be obtained in real time. The system can be widely used in electro-optical countermeasure and concealed photoelectric detection.
基金supported by the Natural Science Foundation of China under Project 41076115the Global Change Research Program of China under project 2012CB955603the Public Science and Technology Research Funds of the Ocean under project 201005019
文摘The study of marine data visualization is of great value. Marine data, due to its large scale, random variation and multiresolution in nature, are hard to be visualized and analyzed. Nowadays, constructing an ocean model and visualizing model results have become some of the most important research topics of ‘Digital Ocean'. In this paper, a spherical ray casting method is developed to improve the traditional ray-casting algorithm and to make efficient use of GPUs. Aiming at the ocean current data, a 3D view-dependent line integral convolution method is used, in which the spatial frequency is adapted according to the distance from a camera. The study is based on a 3D virtual reality and visualization engine, namely the VV-Ocean. Some interactive operations are also provided to highlight the interesting structures and the characteristics of volumetric data. Finally, the marine data gathered in the East China Sea are displayed and analyzed. The results show that the method meets the requirements of real-time and interactive rendering.
文摘法医损伤分析在法医学领域具有重要意义,但损伤形成过程的复杂性和个体差异使损伤分析对专业性要求极高。有限元方法(finite element method, FEM)以其广泛的适用性、可控的精确度和高效的计算能力,结合可视化,在法庭科学领域展现出巨大的应用潜力。本文通过文献分析,介绍FEM的基本原理,探讨其在交通事故、枪击、工具致伤、高坠损伤分析中的应用情况,通过分析各应用场景与碰撞部位的模拟参数、模拟结果及研究侧重,评估FEM在法医损伤分析上的可行性、局限性,为法医损伤分析提供参考和技术途径。
文摘视觉即时定位与建图(visual simultaneous localization and mapping,VSLAM)技术利用视觉传感器分析图像信息,使机器人在未知环境中实现自主定位和实时三维地图构建,是机器人导航和自动驾驶等任务的关键。为了给研究人员提供有价值的参考,梳理了VSLAM的研究现状和最新进展。首先,深入探讨了机器人视觉SLAM算法,根据不同的传感器类型,概述了六种主流的视觉SLAM算法。对这些算法的基本原理进行系统分析,并对其中的经典算法进行了精炼总结。进一步地,将视觉SLAM算法分类为基于特征、基于直接法和基于学习的算法三大类,并详细探讨了各自的优缺点。最后,展望了视觉SLAM技术未来的发展方向,重点关注了深度学习、多传感器融合及实时性能优化等关键研究领域。