Machine learning(ML)has recently enabled many modeling tasks in design,manufacturing,and condition monitoring due to its unparalleled learning ability using existing data.Data have become the limiting factor when impl...Machine learning(ML)has recently enabled many modeling tasks in design,manufacturing,and condition monitoring due to its unparalleled learning ability using existing data.Data have become the limiting factor when implementing ML in industry.However,there is no systematic investigation on how data quality can be assessed and improved for ML-based design and manufacturing.The aim of this survey is to uncover the data challenges in this domain and review the techniques used to resolve them.To establish the background for the subsequent analysis,crucial data terminologies in ML-based modeling are reviewed and categorized into data acquisition,management,analysis,and utilization.Thereafter,the concepts and frameworks established to evaluate data quality and imbalance,including data quality assessment,data readiness,information quality,data biases,fairness,and diversity,are further investigated.The root causes and types of data challenges,including human factors,complex systems,complicated relationships,lack of data quality,data heterogeneity,data imbalance,and data scarcity,are identified and summarized.Methods to improve data quality and mitigate data imbalance and their applications in this domain are reviewed.This literature review focuses on two promising methods:data augmentation and active learning.The strengths,limitations,and applicability of the surveyed techniques are illustrated.The trends of data augmentation and active learning are discussed with respect to their applications,data types,and approaches.Based on this discussion,future directions for data quality improvement and data imbalance mitigation in this domain are identified.展开更多
The paper, with the backdrop of web-based autonomous learning put forward by the recent college English teaching reform, aims to explore teachers' roles in this learning process in students' perception through the m...The paper, with the backdrop of web-based autonomous learning put forward by the recent college English teaching reform, aims to explore teachers' roles in this learning process in students' perception through the means of questionnaires and interviews. It further analyzes the possible reasons why students perceive their teachers' roles in such a way, in the hope of providing some implications for web-based college English autonomous learning.展开更多
The thesis introduces a comparative study of students'autonomous listening practice in a web-based autonomous learning center and the traditional teacher-dominated listening practice in a traditional language lab....The thesis introduces a comparative study of students'autonomous listening practice in a web-based autonomous learning center and the traditional teacher-dominated listening practice in a traditional language lab.The purpose of the study is to find how students'listening strategies differ in these two approaches and thereby to find which one better facilitates students'listening proficiency.展开更多
The paper is a literature review, aiming to examine the effectiveness of web-based college English learning which mainly focuses on learners' autonomous learning. Previous studies indicate that the web-based learn...The paper is a literature review, aiming to examine the effectiveness of web-based college English learning which mainly focuses on learners' autonomous learning. Previous studies indicate that the web-based learning can improve learners' autonomous learning, as well as some problems found in their findings. Therefore, this paper first gives a summary and critique of research studies on the web-based autonomous learning and some factors influencing learners' autonomous learning ability;then, areas that deserve further study are also indicated.展开更多
As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan ba...As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan based on the vibration characteristics of wood is developed using machine learning methods.Generally,the selection of materials for Ruan manufacturing relies primarily on manually weighing,observing,striking,and listening by the instrument technician.Deficiencies in scientific theory have hindered the quality of the finished Ruan.In this study,nine Ruans were manufactured,and a prediction model of Ruan sound quality was proposed based on the raw material information of Ruans.Out of a total of 180 data sets,145 and 45 sets were chosen for training and validation,respec-tively.In this paper,typical correlation analysis was used to determine the correlation between two single indicators in two adjacent pairwise combinations of the measured objects in each stage of the production process in Ruan.The vibra-tion characteristics of the wood were tested,and a model for predicting the evaluation of Ruan’s acoustic qualities was developed by measuring the vibration characteristics of the resonating plate material.The acoustic quality of the Ruan sound board wood was evaluated and predicted using machine learning model generalized regression neural net-work.The results show that the prediction of Ruan sound quality can be achieved using Matlab simulation based on the vibration characteristics of the soundboard wood.When the model-predicted values were compared with the tradi-tional predicted results,it was found that the generalized regression neural network had good performance,achieving an accuracy of 93.8%which was highly consistent with the experimental results.It was concluded that the model can accurately predict the acoustic quality of the Ruan based on the vibration performance of the soundboards.展开更多
In this study, an integrated approach for diagenetic facies classification, reservoir quality analysis and quantitative wireline log prediction of tight gas sandstones(TGSs) is introduced utilizing a combination of fi...In this study, an integrated approach for diagenetic facies classification, reservoir quality analysis and quantitative wireline log prediction of tight gas sandstones(TGSs) is introduced utilizing a combination of fit-for-purpose complementary testing and machine learning techniques. The integrated approach is specialized for the middle Permian Shihezi Formation TGSs in the northeastern Ordos Basin, where operators often face significant drilling uncertainty and increased exploration risks due to low porosities and micro-Darcy range permeabilities. In this study, detrital compositions and diagenetic minerals and their pore type assemblages were analyzed using optical light microscopy, cathodoluminescence, standard scanning electron microscopy, and X-ray diffraction. Different types of diagenetic facies were delineated on this basis to capture the characteristic rock properties of the TGSs in the target formation.A combination of He porosity and permeability measurements, mercury intrusion capillary pressure and nuclear magnetic resonance data was used to analyze the mechanism of heterogeneous TGS reservoirs.We found that the type, size and proportion of pores considerably varied between diagenetic facies due to differences in the initial depositional attributes and subsequent diagenetic alterations;these differences affected the size, distribution and connectivity of the pore network and varied the reservoir quality. Five types of diagenetic facies were classified:(i) grain-coating facies, which have minimal ductile grains, chlorite coatings that inhibit quartz overgrowths, large intergranular pores that dominate the pore network, the best pore structure and the greatest reservoir quality;(ii) quartz-cemented facies,which exhibit strong quartz overgrowths, intergranular porosity and a pore size decrease, resulting in the deterioration of the pore structure and reservoir quality;(iii) mixed-cemented facies, in which the cementation of various authigenic minerals increases the micropores, resulting in a poor pore structure and reservoir quality;(iv) carbonate-cemented facies and(v) tightly compacted facies, in which the intergranular pores are filled with carbonate cement and ductile grains;thus, the pore network mainly consists of micropores with small pore throat sizes, and the pore structure and reservoir quality are the worst. The grain-coating facies with the best reservoir properties are more likely to have high gas productivity and are the primary targets for exploration and development. The diagenetic facies were then translated into wireline log expressions(conventional and NMR logging). Finally, a wireline log quantitative prediction model of TGSs using convolutional neural network machine learning algorithms was established to successfully classify the different diagenetic facies.展开更多
This paper examines the difficulties of managing distributed power systems,notably due to the increasing use of renewable energy sources,and focuses on voltage control challenges exacerbated by their variable nature i...This paper examines the difficulties of managing distributed power systems,notably due to the increasing use of renewable energy sources,and focuses on voltage control challenges exacerbated by their variable nature in modern power grids.To tackle the unique challenges of voltage control in distributed renewable energy networks,researchers are increasingly turning towards multi-agent reinforcement learning(MARL).However,MARL raises safety concerns due to the unpredictability in agent actions during their exploration phase.This unpredictability can lead to unsafe control measures.To mitigate these safety concerns in MARL-based voltage control,our study introduces a novel approach:Safety-ConstrainedMulti-Agent Reinforcement Learning(SC-MARL).This approach incorporates a specialized safety constraint module specifically designed for voltage control within the MARL framework.This module ensures that the MARL agents carry out voltage control actions safely.The experiments demonstrate that,in the 33-buses,141-buses,and 322-buses power systems,employing SC-MARL for voltage control resulted in a reduction of the Voltage Out of Control Rate(%V.out)from0.43,0.24,and 2.95 to 0,0.01,and 0.03,respectively.Additionally,the Reactive Power Loss(Q loss)decreased from 0.095,0.547,and 0.017 to 0.062,0.452,and 0.016 in the corresponding systems.展开更多
This study introduces a monitoring system that can accurately predict the quality of friction stir welds.The study involved four different sets of welding experiments using varying materials and tool configurations.Th...This study introduces a monitoring system that can accurately predict the quality of friction stir welds.The study involved four different sets of welding experiments using varying materials and tool configurations.The goal was to create a universal monitoring system capable of predicting weld quality across these diverse experimental sets.Real-time welding data was collected using instruments such as load cells and a power sensor.Signal processing methods were then used to analyze this data and extract essential information about welding quality.Subsequently,federated learning(FL)was used to develop the universal monitoring system.This method involves collective learning and model training,leading to a global model trained on decentralized data from the different experimental sets.The approach proved to be effective in forecasting weld quality,achieving a mean absolute error(MAE)of 10.44 for all welding experiments.Additionally,it offered benefits such as reduced latency and enhanced user data protection,while maintaining the accuracy of the global model.An artificial neural network model was also developed for comparison with FL,achieving a MAE of 13.85 for the welding experiments.Overall,this study demonstrates the effectiveness of training global and more reliable models,with multiple devices sharing their knowledge bases to train the global model effectively.展开更多
Aim: The purpose of the present study was to investigate the impact of web-based mindfulness yoga on elderly caregivers’ level of insomnia, sleep quality, and beliefs in ideal care using a repeated measure analysis. ...Aim: The purpose of the present study was to investigate the impact of web-based mindfulness yoga on elderly caregivers’ level of insomnia, sleep quality, and beliefs in ideal care using a repeated measure analysis. Web-based interventions are highly beneficial for many individuals of all ages since they are accessible, convenient, private, cost-effective, and can impact on a large scale. Since there is no study examining the impact of web-based mindfulness yoga programs on insomnia, sleep quality, and beliefs in their ideal care, this study is worthy of investigation. Methods: A total of 27 care workers who met all criteria from care service centers for the elderly in the Kyushu area, Japan, completed the Insomnia Severity Index, Sleep Quality Scale extracted from the Oguri-Shirakawa-Azumi Sleep Inventory, and Caregivers’ Belief in Ideal Care before and after practicing a web-based mindfulness yoga program. We employed a within-subject design to investigate the effect of mindfulness yoga on those measured surveys. Results: Repeated-measures ANOVAs were performed by comparing the ISI-J, CBIC, and Sleep Quality Scale before and after the intervention. The results revealed that participants significantly improved their insomnia, sleep quality, and beliefs in ideal care, which were assessed after the intervention compared to before the intervention. Conclusion: Web-based interventions are extremely beneficial for many individuals of all ages since they are accessible, convenient, private, cost-effective, and can impact on a large scale. Furthermore, given that alleviating poor work environment may be associated with mitigating high turnover rates and prevention of maltreatment of their elderly clients, this study has added to current literature the crucial roles of web-based intervention programs. We hope that our findings will encourage the provision of web-based intervention programs where caregivers can practice them during their break or at home.展开更多
Taking the discourse learning of the new senior high school English textbook published by the People’s Education Press as an example,combined with the“six-dimensional guidance”deep reading strategy,and through the ...Taking the discourse learning of the new senior high school English textbook published by the People’s Education Press as an example,combined with the“six-dimensional guidance”deep reading strategy,and through the six-skill training strategies of“memory skill training,understanding skill training,application skill training,analytical skill training,evaluation skill training,creative skill training,”this paper aims to cultivate students’thinking profundity,logic,flexibility,sensitivity,criticality,and originality.It also promotes the real implementation of senior high school English deep reading that points to the cultivation of thinking quality in classroom teaching,and realizes the transformation from“conventional reading”to“deep reading”that reflects the core literacy of the discipline.展开更多
Since Henry Holec first put forward the term‘Autonomy'in 1980's, autonomous learning has been drawing the universal attention of scholars both at home and abroad. Promoting learners' ability of self-regul...Since Henry Holec first put forward the term‘Autonomy'in 1980's, autonomous learning has been drawing the universal attention of scholars both at home and abroad. Promoting learners' ability of self-regulated learning has been taken as one of the important goals of modern education. College English autonomous learning based on network environment does not mean free study without any restraints or monitoring, but rather involves the self-monitoring and external monitoring. Meanwhile, different learners may have different cognitive styles in their learning processes, which may have an influence on the improvement of the learners' efficiency in the autonomous language learning. Proper monitoring models coordinating with the students' different field cognitive styles.展开更多
College English is a compulsory course for all registered online learners in Jiangsu Open University and students have been practicing web-based learning instead of face-to-face classes ever since 2014.Questionnaires ...College English is a compulsory course for all registered online learners in Jiangsu Open University and students have been practicing web-based learning instead of face-to-face classes ever since 2014.Questionnaires and interviews are adopted to look into the 4-year-long practice of web-based learning in College English in JSOU.By analyzing the data obtained from both teachers and students,the findings show:(1)web-based learning caters to online learners in that the online learning materials,particularly micro-lessons,are well-designed and easily accessible.(2)web-based learning helps teachers monitor the learning process of online learners and therefore assures the quality of online learning.(3)web-based learning enhances effective learning since students and teachers can communicate conveniently and instantly via online chat rooms and instant messaging software.展开更多
There have been numerous attempts recently to promote technology based education (Shrestha, 1997) in the poorer third world countries, but so far all these have not provided a sustainable solution as they are either c...There have been numerous attempts recently to promote technology based education (Shrestha, 1997) in the poorer third world countries, but so far all these have not provided a sustainable solution as they are either centered and controlled from abroad and relying solely on foreign donors for their sustenance or they are not web-based, which make distribution problematic, and some are not affordable by most of the local population in these places. In this paper we discuss an application, the Local College Learning Management System (LoColms) , which we are developing, that is both sustainable and economical to suit the situation inthese countries. The application is a web-based system, and aims at improving the traditional form of education by empowering the local universities. Its economicability comes from the fact that it is supported by traditional communication technology, the public switching telephone network system, PSTN, which eliminates the need for packet switched or dedicated private virtual networks (PVN) usually required in similar situations. At a later stage, we shall incorporate ontology and paging tools to improve resource sharability and storage optimization in the Proxy Caches (ProCa) and LoColms servers. The system is based on the client/server paradigm and its infrastructure consists of the PSTN, ProCa, with the learning centers accessing the universities by means of point-to-point protocol (PPP) .展开更多
In a field rapidly evolving over the past few years, the management of inflammatory bowel diseases(IBD), Crohn's disease and ulcerative colitis, is becoming in-creasingly complex, demanding and challenging. In the...In a field rapidly evolving over the past few years, the management of inflammatory bowel diseases(IBD), Crohn's disease and ulcerative colitis, is becoming in-creasingly complex, demanding and challenging. In the recent years, IBD quality measures aiming to improve patients' care have been developed, multiple new medical therapies have been approved, new treatment goals have been set with the "treat--to--target" concept and drug monitoring has been implemented into IBD clinical management. Moreover, patients are increasingly using Internet resources to obtain information about their health conditions. The healthcare professional with an interest in treating IBD patients should deal with all these challenges in everyday practice by establishing, enhancing and maintaining a strong core of knowledge and skills related to IBD. This is an ongoing process and traditionally these needs are covered with additional reading of textbook or journal articles, attendance at meetings or conferences, or at local rounds. Web--based learning resources expand the options for knowledge acquisition and save time and costs as well. In the new era of communications technology, web-based resources can cover the educational needs of both patients and healthcare professionals and can contribute to improvement of disease management and patient care. Healthcare professionals can individually visit and navigate regularly relevant websites and tailor choices for educational activities according to their existing needs. They can also provide their patients with a few certified suitable internet resources. In this review, we explored the Internet using PubMed and Startpage(Google), for web-based IBD--related educational resources aiming to provide a guide for those interested in obtaining certified knowledge in this subject.展开更多
In web-based learning environment,College English writing has always been a thorny issue.Here both asynchronous and synchronous communications in college English writing mean the new interactive teaching belief. This ...In web-based learning environment,College English writing has always been a thorny issue.Here both asynchronous and synchronous communications in college English writing mean the new interactive teaching belief. This paper attempts to do the blending of two in the traditional writing learning and teaching in college English in order to promote a more flexible,efficient and interactive learning environment in accordance with students' interests and needs.展开更多
Background and Aim: Quality of sleep is essential element for learning and memory. Students’ learning performance may be affected by sleep. The purpose of this study was to explore the relationship between quality of...Background and Aim: Quality of sleep is essential element for learning and memory. Students’ learning performance may be affected by sleep. The purpose of this study was to explore the relationship between quality of sleep and learning satisfaction on nursing college students. Design and Participants: A cross-sectional with correlation study design was employed. 200 students were recruited from the nursing college. Pittsburgh Sleep Quality Index and Learning Satisfaction Scale were used for data collection. SPSS for window 17.0 was used for data analysis. Results: Findings showed: 1) 53% of participants rated their sleep quality as poor;2) the global learning satisfaction of participants varied between highly satisfaction and satisfaction;3) the global learning satisfaction was significantly negative related to “subjective sleep quality”, “use the sleep pill”, and “daytime dysfunction” (p < 0.05), finally, students who were interested in nursing can be explained 10.2% of the total amount of variances in learning satisfaction. Conclusions: The findings can provide information regarding nursing students’ sleep status and learning satisfaction to school teacher. The information would be helpful as evidences when laying out nursing curriculum to strengthen students’ sleep hygiene and learning of affective domain in the future.展开更多
BACKGROUND Although immune checkpoint inhibitors(ICIs)have demonstrated significant survival benefits in some patients diagnosed with gastric cancer(GC),existing prognostic markers are not universally applicable to al...BACKGROUND Although immune checkpoint inhibitors(ICIs)have demonstrated significant survival benefits in some patients diagnosed with gastric cancer(GC),existing prognostic markers are not universally applicable to all patients with advanced GC.AIM To investigate biomarkers that predict prognosis in GC patients treated with ICIs and develop accurate predictive models.METHODS Data from 273 patients diagnosed with GC and distant metastasis,who un-derwent≥1 cycle(s)of ICIs therapy were included in this study.Patients were randomly divided into training and test sets at a ratio of 7:3.Training set data were used to develop the machine learning models,and the test set was used to validate their predictive ability.Shapley additive explanations were used to provide insights into the best model.RESULTS Among the 273 patients with GC treated with ICIs in this study,112 died within 1 year,and 129 progressed within the same timeframe.Five features related to overall survival and 4 related to progression-free survival were identified and used to construct eXtreme Gradient Boosting(XGBoost),logistic regression,and decision tree.After comprehensive evaluation,XGBoost demonstrated good accuracy in predicting overall survival and progression-free survival.CONCLUSION The XGBoost model aided in identifying patients with GC who were more likely to benefit from ICIs therapy.Patient nutritional status may,to some extent,reflect prognosis.展开更多
Students'demand for online learning has exploded during the post-COvID-19 pandemic era.However,due to their poor learning experience,students'dropout rate and learning performance of online learning are not al...Students'demand for online learning has exploded during the post-COvID-19 pandemic era.However,due to their poor learning experience,students'dropout rate and learning performance of online learning are not always satisfactory.The technical advantages of Beyond Fifth Generation(B5G)can guarantee a good multimedia Quality of Experience(QoE).As a special case of multimedia services,online learning takes into account both the usability of the service and the cognitive development of the users.Factors that affect the Quality of Online Learning Experience(OL-QoE)become more complicated.To get over this dilemma,we propose a systematic scheme by integrating big data,Machine Learning(ML)technologies,and educational psychology theory.Specifically,we first formulate a general definition of OL-QoE by data analysis and experimental verification.This formula considers both the subjective and objective factors(i.e.,video watching ratio and test scores)that most affect OLQoE.Then,we induce an extended layer to the classic Broad Learning System(BLS)to construct an Extended Broad Learning System(EBLS)for the students'OL-QoE prediction.Since the extended layer can increase the width of the BLS model and reduce the redundant nodes of BLS,the proposed EBLS can achieve a trade-off between the prediction accuracy and computation complexity.Finally,we provide a series of early intervention suggestions for different types of students according to their predicted OL-QoE values.Through timely interventions,their OL-QoE and learning performance can be improved.Experimental results verify the effectiveness oftheproposed scheme.展开更多
Given the increasing number of countries reporting degraded air quality,effective air quality monitoring has become a critical issue in today’s world.However,the current air quality observatory systems are often proh...Given the increasing number of countries reporting degraded air quality,effective air quality monitoring has become a critical issue in today’s world.However,the current air quality observatory systems are often prohibitively expensive,resulting in a lack of observatories in many regions within a country.Consequently,a significant problem arises where not every region receives the same level of air quality information.This disparity occurs because some locations have to rely on information from observatories located far away from their regions,even if they may be the closest available options.To address this challenge,a novel approach that leverages machine learning and deep learning techniques to forecast fine dust concentrations was proposed.Specifically,continuous location features in the form of latitude and longitude values were incorporated into our models.By utilizing a comprehensive dataset comprising weather conditions,air quality measurements,and location properties,various machine learning models,including Random Forest Regression,XGBoost Regression,AdaBoost Regression,and a deep learning model known as Long Short-Term Memory(LSTM)were trained.Our experimental results demonstrated that the LSTM model outperforms the other models,achieving the best score with a root mean squared error of 23.48 in predicting fine dust(PM10)concentrations on an hourly basis.Furthermore,the fact that incorporating location properties,such as longitude and latitude values,enhances the overall quality of the regression models was discovered.Additionally,the implications and contributions of our research were discussed.By implementing our approach,the cost associated with relying solely on existing observatories can be substantially reduced.This reduction in costs can pave the way for economically efficient fine dust observation systems,ensuring more widespread and accurate air quality monitoring across different regions.展开更多
Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep...Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep learning approach is developed,which uses stacked autoencoders(SAEs)with several autoencoders and a softmax net layer.Ten rock parameters of rock mass rating(RMR)system are calibrated in this model.The model is trained using 75%of the total database for training sample data.The SAEs trained model achieves a nearly 100%prediction accuracy.For comparison,other different models are also trained with the same dataset,using artificial neural network(ANN)and radial basis function(RBF).The results show that the SAEs classify all test samples correctly while the rating accuracies of ANN and RBF are 97.5%and 98.7%,repectively,which are calculated from the confusion matrix.Moreover,this model is further employed to predict the slope risk level of an abandoned quarry.The proposed approach using SAEs,or deep learning in general,is more objective and more accurate and requires less human inter-vention.The findings presented here shall shed light for engineers/researchers interested in analyzing rock mass classification criteria or performing field investigation.展开更多
基金funded by the McGill University Graduate Excellence Fellowship Award(00157)the Mitacs Accelerate Program(IT13369)the McGill Engineering Doctoral Award(MEDA).
文摘Machine learning(ML)has recently enabled many modeling tasks in design,manufacturing,and condition monitoring due to its unparalleled learning ability using existing data.Data have become the limiting factor when implementing ML in industry.However,there is no systematic investigation on how data quality can be assessed and improved for ML-based design and manufacturing.The aim of this survey is to uncover the data challenges in this domain and review the techniques used to resolve them.To establish the background for the subsequent analysis,crucial data terminologies in ML-based modeling are reviewed and categorized into data acquisition,management,analysis,and utilization.Thereafter,the concepts and frameworks established to evaluate data quality and imbalance,including data quality assessment,data readiness,information quality,data biases,fairness,and diversity,are further investigated.The root causes and types of data challenges,including human factors,complex systems,complicated relationships,lack of data quality,data heterogeneity,data imbalance,and data scarcity,are identified and summarized.Methods to improve data quality and mitigate data imbalance and their applications in this domain are reviewed.This literature review focuses on two promising methods:data augmentation and active learning.The strengths,limitations,and applicability of the surveyed techniques are illustrated.The trends of data augmentation and active learning are discussed with respect to their applications,data types,and approaches.Based on this discussion,future directions for data quality improvement and data imbalance mitigation in this domain are identified.
文摘The paper, with the backdrop of web-based autonomous learning put forward by the recent college English teaching reform, aims to explore teachers' roles in this learning process in students' perception through the means of questionnaires and interviews. It further analyzes the possible reasons why students perceive their teachers' roles in such a way, in the hope of providing some implications for web-based college English autonomous learning.
文摘The thesis introduces a comparative study of students'autonomous listening practice in a web-based autonomous learning center and the traditional teacher-dominated listening practice in a traditional language lab.The purpose of the study is to find how students'listening strategies differ in these two approaches and thereby to find which one better facilitates students'listening proficiency.
文摘The paper is a literature review, aiming to examine the effectiveness of web-based college English learning which mainly focuses on learners' autonomous learning. Previous studies indicate that the web-based learning can improve learners' autonomous learning, as well as some problems found in their findings. Therefore, this paper first gives a summary and critique of research studies on the web-based autonomous learning and some factors influencing learners' autonomous learning ability;then, areas that deserve further study are also indicated.
基金supported by China Postdoctoral Science Foundation(2019M651240)National Natural Science Foundation of China(31670559).
文摘As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan based on the vibration characteristics of wood is developed using machine learning methods.Generally,the selection of materials for Ruan manufacturing relies primarily on manually weighing,observing,striking,and listening by the instrument technician.Deficiencies in scientific theory have hindered the quality of the finished Ruan.In this study,nine Ruans were manufactured,and a prediction model of Ruan sound quality was proposed based on the raw material information of Ruans.Out of a total of 180 data sets,145 and 45 sets were chosen for training and validation,respec-tively.In this paper,typical correlation analysis was used to determine the correlation between two single indicators in two adjacent pairwise combinations of the measured objects in each stage of the production process in Ruan.The vibra-tion characteristics of the wood were tested,and a model for predicting the evaluation of Ruan’s acoustic qualities was developed by measuring the vibration characteristics of the resonating plate material.The acoustic quality of the Ruan sound board wood was evaluated and predicted using machine learning model generalized regression neural net-work.The results show that the prediction of Ruan sound quality can be achieved using Matlab simulation based on the vibration characteristics of the soundboard wood.When the model-predicted values were compared with the tradi-tional predicted results,it was found that the generalized regression neural network had good performance,achieving an accuracy of 93.8%which was highly consistent with the experimental results.It was concluded that the model can accurately predict the acoustic quality of the Ruan based on the vibration performance of the soundboards.
基金financially supported by the National Natural Science Foundation of China (No. 42272156)research on efficient exploration and development technology for tight stone gas of China United Coalbed Methane Corporation (No. ZZGSECCYWG 2021-322)。
文摘In this study, an integrated approach for diagenetic facies classification, reservoir quality analysis and quantitative wireline log prediction of tight gas sandstones(TGSs) is introduced utilizing a combination of fit-for-purpose complementary testing and machine learning techniques. The integrated approach is specialized for the middle Permian Shihezi Formation TGSs in the northeastern Ordos Basin, where operators often face significant drilling uncertainty and increased exploration risks due to low porosities and micro-Darcy range permeabilities. In this study, detrital compositions and diagenetic minerals and their pore type assemblages were analyzed using optical light microscopy, cathodoluminescence, standard scanning electron microscopy, and X-ray diffraction. Different types of diagenetic facies were delineated on this basis to capture the characteristic rock properties of the TGSs in the target formation.A combination of He porosity and permeability measurements, mercury intrusion capillary pressure and nuclear magnetic resonance data was used to analyze the mechanism of heterogeneous TGS reservoirs.We found that the type, size and proportion of pores considerably varied between diagenetic facies due to differences in the initial depositional attributes and subsequent diagenetic alterations;these differences affected the size, distribution and connectivity of the pore network and varied the reservoir quality. Five types of diagenetic facies were classified:(i) grain-coating facies, which have minimal ductile grains, chlorite coatings that inhibit quartz overgrowths, large intergranular pores that dominate the pore network, the best pore structure and the greatest reservoir quality;(ii) quartz-cemented facies,which exhibit strong quartz overgrowths, intergranular porosity and a pore size decrease, resulting in the deterioration of the pore structure and reservoir quality;(iii) mixed-cemented facies, in which the cementation of various authigenic minerals increases the micropores, resulting in a poor pore structure and reservoir quality;(iv) carbonate-cemented facies and(v) tightly compacted facies, in which the intergranular pores are filled with carbonate cement and ductile grains;thus, the pore network mainly consists of micropores with small pore throat sizes, and the pore structure and reservoir quality are the worst. The grain-coating facies with the best reservoir properties are more likely to have high gas productivity and are the primary targets for exploration and development. The diagenetic facies were then translated into wireline log expressions(conventional and NMR logging). Finally, a wireline log quantitative prediction model of TGSs using convolutional neural network machine learning algorithms was established to successfully classify the different diagenetic facies.
基金“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-002).
文摘This paper examines the difficulties of managing distributed power systems,notably due to the increasing use of renewable energy sources,and focuses on voltage control challenges exacerbated by their variable nature in modern power grids.To tackle the unique challenges of voltage control in distributed renewable energy networks,researchers are increasingly turning towards multi-agent reinforcement learning(MARL).However,MARL raises safety concerns due to the unpredictability in agent actions during their exploration phase.This unpredictability can lead to unsafe control measures.To mitigate these safety concerns in MARL-based voltage control,our study introduces a novel approach:Safety-ConstrainedMulti-Agent Reinforcement Learning(SC-MARL).This approach incorporates a specialized safety constraint module specifically designed for voltage control within the MARL framework.This module ensures that the MARL agents carry out voltage control actions safely.The experiments demonstrate that,in the 33-buses,141-buses,and 322-buses power systems,employing SC-MARL for voltage control resulted in a reduction of the Voltage Out of Control Rate(%V.out)from0.43,0.24,and 2.95 to 0,0.01,and 0.03,respectively.Additionally,the Reactive Power Loss(Q loss)decreased from 0.095,0.547,and 0.017 to 0.062,0.452,and 0.016 in the corresponding systems.
文摘This study introduces a monitoring system that can accurately predict the quality of friction stir welds.The study involved four different sets of welding experiments using varying materials and tool configurations.The goal was to create a universal monitoring system capable of predicting weld quality across these diverse experimental sets.Real-time welding data was collected using instruments such as load cells and a power sensor.Signal processing methods were then used to analyze this data and extract essential information about welding quality.Subsequently,federated learning(FL)was used to develop the universal monitoring system.This method involves collective learning and model training,leading to a global model trained on decentralized data from the different experimental sets.The approach proved to be effective in forecasting weld quality,achieving a mean absolute error(MAE)of 10.44 for all welding experiments.Additionally,it offered benefits such as reduced latency and enhanced user data protection,while maintaining the accuracy of the global model.An artificial neural network model was also developed for comparison with FL,achieving a MAE of 13.85 for the welding experiments.Overall,this study demonstrates the effectiveness of training global and more reliable models,with multiple devices sharing their knowledge bases to train the global model effectively.
文摘Aim: The purpose of the present study was to investigate the impact of web-based mindfulness yoga on elderly caregivers’ level of insomnia, sleep quality, and beliefs in ideal care using a repeated measure analysis. Web-based interventions are highly beneficial for many individuals of all ages since they are accessible, convenient, private, cost-effective, and can impact on a large scale. Since there is no study examining the impact of web-based mindfulness yoga programs on insomnia, sleep quality, and beliefs in their ideal care, this study is worthy of investigation. Methods: A total of 27 care workers who met all criteria from care service centers for the elderly in the Kyushu area, Japan, completed the Insomnia Severity Index, Sleep Quality Scale extracted from the Oguri-Shirakawa-Azumi Sleep Inventory, and Caregivers’ Belief in Ideal Care before and after practicing a web-based mindfulness yoga program. We employed a within-subject design to investigate the effect of mindfulness yoga on those measured surveys. Results: Repeated-measures ANOVAs were performed by comparing the ISI-J, CBIC, and Sleep Quality Scale before and after the intervention. The results revealed that participants significantly improved their insomnia, sleep quality, and beliefs in ideal care, which were assessed after the intervention compared to before the intervention. Conclusion: Web-based interventions are extremely beneficial for many individuals of all ages since they are accessible, convenient, private, cost-effective, and can impact on a large scale. Furthermore, given that alleviating poor work environment may be associated with mitigating high turnover rates and prevention of maltreatment of their elderly clients, this study has added to current literature the crucial roles of web-based intervention programs. We hope that our findings will encourage the provision of web-based intervention programs where caregivers can practice them during their break or at home.
文摘Taking the discourse learning of the new senior high school English textbook published by the People’s Education Press as an example,combined with the“six-dimensional guidance”deep reading strategy,and through the six-skill training strategies of“memory skill training,understanding skill training,application skill training,analytical skill training,evaluation skill training,creative skill training,”this paper aims to cultivate students’thinking profundity,logic,flexibility,sensitivity,criticality,and originality.It also promotes the real implementation of senior high school English deep reading that points to the cultivation of thinking quality in classroom teaching,and realizes the transformation from“conventional reading”to“deep reading”that reflects the core literacy of the discipline.
文摘Since Henry Holec first put forward the term‘Autonomy'in 1980's, autonomous learning has been drawing the universal attention of scholars both at home and abroad. Promoting learners' ability of self-regulated learning has been taken as one of the important goals of modern education. College English autonomous learning based on network environment does not mean free study without any restraints or monitoring, but rather involves the self-monitoring and external monitoring. Meanwhile, different learners may have different cognitive styles in their learning processes, which may have an influence on the improvement of the learners' efficiency in the autonomous language learning. Proper monitoring models coordinating with the students' different field cognitive styles.
文摘College English is a compulsory course for all registered online learners in Jiangsu Open University and students have been practicing web-based learning instead of face-to-face classes ever since 2014.Questionnaires and interviews are adopted to look into the 4-year-long practice of web-based learning in College English in JSOU.By analyzing the data obtained from both teachers and students,the findings show:(1)web-based learning caters to online learners in that the online learning materials,particularly micro-lessons,are well-designed and easily accessible.(2)web-based learning helps teachers monitor the learning process of online learners and therefore assures the quality of online learning.(3)web-based learning enhances effective learning since students and teachers can communicate conveniently and instantly via online chat rooms and instant messaging software.
文摘There have been numerous attempts recently to promote technology based education (Shrestha, 1997) in the poorer third world countries, but so far all these have not provided a sustainable solution as they are either centered and controlled from abroad and relying solely on foreign donors for their sustenance or they are not web-based, which make distribution problematic, and some are not affordable by most of the local population in these places. In this paper we discuss an application, the Local College Learning Management System (LoColms) , which we are developing, that is both sustainable and economical to suit the situation inthese countries. The application is a web-based system, and aims at improving the traditional form of education by empowering the local universities. Its economicability comes from the fact that it is supported by traditional communication technology, the public switching telephone network system, PSTN, which eliminates the need for packet switched or dedicated private virtual networks (PVN) usually required in similar situations. At a later stage, we shall incorporate ontology and paging tools to improve resource sharability and storage optimization in the Proxy Caches (ProCa) and LoColms servers. The system is based on the client/server paradigm and its infrastructure consists of the PSTN, ProCa, with the learning centers accessing the universities by means of point-to-point protocol (PPP) .
文摘In a field rapidly evolving over the past few years, the management of inflammatory bowel diseases(IBD), Crohn's disease and ulcerative colitis, is becoming in-creasingly complex, demanding and challenging. In the recent years, IBD quality measures aiming to improve patients' care have been developed, multiple new medical therapies have been approved, new treatment goals have been set with the "treat--to--target" concept and drug monitoring has been implemented into IBD clinical management. Moreover, patients are increasingly using Internet resources to obtain information about their health conditions. The healthcare professional with an interest in treating IBD patients should deal with all these challenges in everyday practice by establishing, enhancing and maintaining a strong core of knowledge and skills related to IBD. This is an ongoing process and traditionally these needs are covered with additional reading of textbook or journal articles, attendance at meetings or conferences, or at local rounds. Web--based learning resources expand the options for knowledge acquisition and save time and costs as well. In the new era of communications technology, web-based resources can cover the educational needs of both patients and healthcare professionals and can contribute to improvement of disease management and patient care. Healthcare professionals can individually visit and navigate regularly relevant websites and tailor choices for educational activities according to their existing needs. They can also provide their patients with a few certified suitable internet resources. In this review, we explored the Internet using PubMed and Startpage(Google), for web-based IBD--related educational resources aiming to provide a guide for those interested in obtaining certified knowledge in this subject.
文摘In web-based learning environment,College English writing has always been a thorny issue.Here both asynchronous and synchronous communications in college English writing mean the new interactive teaching belief. This paper attempts to do the blending of two in the traditional writing learning and teaching in college English in order to promote a more flexible,efficient and interactive learning environment in accordance with students' interests and needs.
文摘Background and Aim: Quality of sleep is essential element for learning and memory. Students’ learning performance may be affected by sleep. The purpose of this study was to explore the relationship between quality of sleep and learning satisfaction on nursing college students. Design and Participants: A cross-sectional with correlation study design was employed. 200 students were recruited from the nursing college. Pittsburgh Sleep Quality Index and Learning Satisfaction Scale were used for data collection. SPSS for window 17.0 was used for data analysis. Results: Findings showed: 1) 53% of participants rated their sleep quality as poor;2) the global learning satisfaction of participants varied between highly satisfaction and satisfaction;3) the global learning satisfaction was significantly negative related to “subjective sleep quality”, “use the sleep pill”, and “daytime dysfunction” (p < 0.05), finally, students who were interested in nursing can be explained 10.2% of the total amount of variances in learning satisfaction. Conclusions: The findings can provide information regarding nursing students’ sleep status and learning satisfaction to school teacher. The information would be helpful as evidences when laying out nursing curriculum to strengthen students’ sleep hygiene and learning of affective domain in the future.
基金Supported by the Nn10 Program of Harbin Medical University Cancer Hospital,China,No.Nn10 PY 2017-03.
文摘BACKGROUND Although immune checkpoint inhibitors(ICIs)have demonstrated significant survival benefits in some patients diagnosed with gastric cancer(GC),existing prognostic markers are not universally applicable to all patients with advanced GC.AIM To investigate biomarkers that predict prognosis in GC patients treated with ICIs and develop accurate predictive models.METHODS Data from 273 patients diagnosed with GC and distant metastasis,who un-derwent≥1 cycle(s)of ICIs therapy were included in this study.Patients were randomly divided into training and test sets at a ratio of 7:3.Training set data were used to develop the machine learning models,and the test set was used to validate their predictive ability.Shapley additive explanations were used to provide insights into the best model.RESULTS Among the 273 patients with GC treated with ICIs in this study,112 died within 1 year,and 129 progressed within the same timeframe.Five features related to overall survival and 4 related to progression-free survival were identified and used to construct eXtreme Gradient Boosting(XGBoost),logistic regression,and decision tree.After comprehensive evaluation,XGBoost demonstrated good accuracy in predicting overall survival and progression-free survival.CONCLUSION The XGBoost model aided in identifying patients with GC who were more likely to benefit from ICIs therapy.Patient nutritional status may,to some extent,reflect prognosis.
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX20_0733)Education Reform Foundation of Jiangsu Province(Grant No.2021JSJG364)+1 种基金Key Education Reform Foundation of NJUPT(Grant No.JG00220JX02,JG00218JX03,JG00215JX01,JG00214JX52)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Students'demand for online learning has exploded during the post-COvID-19 pandemic era.However,due to their poor learning experience,students'dropout rate and learning performance of online learning are not always satisfactory.The technical advantages of Beyond Fifth Generation(B5G)can guarantee a good multimedia Quality of Experience(QoE).As a special case of multimedia services,online learning takes into account both the usability of the service and the cognitive development of the users.Factors that affect the Quality of Online Learning Experience(OL-QoE)become more complicated.To get over this dilemma,we propose a systematic scheme by integrating big data,Machine Learning(ML)technologies,and educational psychology theory.Specifically,we first formulate a general definition of OL-QoE by data analysis and experimental verification.This formula considers both the subjective and objective factors(i.e.,video watching ratio and test scores)that most affect OLQoE.Then,we induce an extended layer to the classic Broad Learning System(BLS)to construct an Extended Broad Learning System(EBLS)for the students'OL-QoE prediction.Since the extended layer can increase the width of the BLS model and reduce the redundant nodes of BLS,the proposed EBLS can achieve a trade-off between the prediction accuracy and computation complexity.Finally,we provide a series of early intervention suggestions for different types of students according to their predicted OL-QoE values.Through timely interventions,their OL-QoE and learning performance can be improved.Experimental results verify the effectiveness oftheproposed scheme.
基金This research was supported by the MSIT(Ministry of Science and ICT),Korea,under the ICAN(ICT Challenge and Advanced Network of HRD)Program(IITP-2020-0-01816)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)This research was also supported by National Research Foundation(NRF)of Korea Grant funded by the Korean Government(MSIT)(No.2021R1A4A3022102).
文摘Given the increasing number of countries reporting degraded air quality,effective air quality monitoring has become a critical issue in today’s world.However,the current air quality observatory systems are often prohibitively expensive,resulting in a lack of observatories in many regions within a country.Consequently,a significant problem arises where not every region receives the same level of air quality information.This disparity occurs because some locations have to rely on information from observatories located far away from their regions,even if they may be the closest available options.To address this challenge,a novel approach that leverages machine learning and deep learning techniques to forecast fine dust concentrations was proposed.Specifically,continuous location features in the form of latitude and longitude values were incorporated into our models.By utilizing a comprehensive dataset comprising weather conditions,air quality measurements,and location properties,various machine learning models,including Random Forest Regression,XGBoost Regression,AdaBoost Regression,and a deep learning model known as Long Short-Term Memory(LSTM)were trained.Our experimental results demonstrated that the LSTM model outperforms the other models,achieving the best score with a root mean squared error of 23.48 in predicting fine dust(PM10)concentrations on an hourly basis.Furthermore,the fact that incorporating location properties,such as longitude and latitude values,enhances the overall quality of the regression models was discovered.Additionally,the implications and contributions of our research were discussed.By implementing our approach,the cost associated with relying solely on existing observatories can be substantially reduced.This reduction in costs can pave the way for economically efficient fine dust observation systems,ensuring more widespread and accurate air quality monitoring across different regions.
基金supported by the National Natural Science Foundation of China(Grant Nos.51979253,51879245)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821).
文摘Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep learning approach is developed,which uses stacked autoencoders(SAEs)with several autoencoders and a softmax net layer.Ten rock parameters of rock mass rating(RMR)system are calibrated in this model.The model is trained using 75%of the total database for training sample data.The SAEs trained model achieves a nearly 100%prediction accuracy.For comparison,other different models are also trained with the same dataset,using artificial neural network(ANN)and radial basis function(RBF).The results show that the SAEs classify all test samples correctly while the rating accuracies of ANN and RBF are 97.5%and 98.7%,repectively,which are calculated from the confusion matrix.Moreover,this model is further employed to predict the slope risk level of an abandoned quarry.The proposed approach using SAEs,or deep learning in general,is more objective and more accurate and requires less human inter-vention.The findings presented here shall shed light for engineers/researchers interested in analyzing rock mass classification criteria or performing field investigation.