期刊文献+
共找到682篇文章
< 1 2 35 >
每页显示 20 50 100
Modeling and Forecasting of Consumer Price Index of Foods and Non-Alcoholic Beverages in Kenya Using Autoregressive Integrated Moving Average Models
1
作者 Michael Mbaria Chege 《Open Journal of Statistics》 2024年第6期677-688,共12页
Food and non-alcoholic beverages are highly important for individuals to continue staying alive and living healthy lives. The increase in the prices of food and non-alcoholic beverages experienced across the world ove... Food and non-alcoholic beverages are highly important for individuals to continue staying alive and living healthy lives. The increase in the prices of food and non-alcoholic beverages experienced across the world over years has continued to make food and non-alcoholic beverages not to be accessible and affordable to individuals and families having a low income. The aim of this particular research study was to identify how Kenya’s CPI of food and non-alcoholic beverages could be modelled using Autoregressive Integrated Moving Average (ARIMA) models for forecasting future values for the next two years. The data used for the study was that of Kenya’s CPI of food and non-alcoholic beverages for the period starting from February 2009 to April 2024 obtained from the International Monetary Fund (IMF) database. The best specification for the ARIMA model was identified using Akaike Information Criterion (AIC), root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and mean absolute scaled error (MASE) and assessing whether residuals of the model were independent and normally distributed with a variance that is constant an whether the model has most of its coefficients being significant statistically. ARIMA (3, 1, 0) (1, 0, 0) model was identified as the best ARIMA model for modeling Kenya’s CPI of food and non-beverages for forecasting future values among the ARIMA models considered. Using this particular model, Kenya’s CPI of food and non-alcoholic beverages was forecasted to increase only slightly with time to reach a value of about 165.70 by March 2026. 展开更多
关键词 Consumer Price Index Food and Non-Alcoholic Beverages autoregressive Integrated moving averages modeling and Forecasting
在线阅读 下载PDF
Modelling and Forecasting of Greenhouse Gas Emissions by the Energy Sector in Kenya Using Autoregressive Integrated Moving Average (ARIMA) Models
2
作者 Michael Mbaria Chege 《Open Journal of Statistics》 2024年第6期667-676,共10页
The energy sector is the second largest emitter of greenhouse (GHG) gases in Kenya, emitting about 31.2% of GHG emissions in the country. The aim of this study was to model Kenya’s GHG emissions by the energy sector ... The energy sector is the second largest emitter of greenhouse (GHG) gases in Kenya, emitting about 31.2% of GHG emissions in the country. The aim of this study was to model Kenya’s GHG emissions by the energy sector using ARIMA models for forecasting future values. The data used for the study was that of Kenya’s GHG emissions by the energy sector for the period starting from 1970 to 2022 obtained for the International Monetary Fund (IMF) database that was split into training and testing sets using the 80/20 rule for modelling purposes. The best specification for the ARIMA model was identified using Akaike Information Criterion (AIC), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and mean absolute scaled error (MASE). ARIMA (1, 1, 1) was identified as the best model for modelling Kenya’s GHG emissions and forecasting future values. Using this model, Kenya’s GHG emissions by the energy sector were forecasted to increase to a value of about 43.13 million metric tons of carbon dioxide equivalents by 2030. The study, therefore, recommends that Kenya should accelerate the adjustment of industry structure and improve the efficient use of energy, optimize the energy structure and accelerate development and promotion of energy-efficient products to reduce the emission of GHGs by the country’s energy sector. 展开更多
关键词 Greenhouse Gases Energy Sector autoregressive moving averages models
在线阅读 下载PDF
Noise reduction of acoustic Doppler velocimeter data based on Kalman filtering and autoregressive moving average models
3
作者 Chuanjiang Huang Fangli Qiao Hongyu Ma 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第12期106-113,共8页
Oceanic turbulence measurements made by an acoustic Doppler velocimeter(ADV)suffer from noise that potentially affects the estimates of turbulence statistics.This study examines the abilities of Kalman filtering and a... Oceanic turbulence measurements made by an acoustic Doppler velocimeter(ADV)suffer from noise that potentially affects the estimates of turbulence statistics.This study examines the abilities of Kalman filtering and autoregressive moving average models to eliminate noise in ADV velocity datasets of laboratory experiments and offshore observations.Results show that the two methods have similar performance in ADV de-noising,and both effectively reduce noise in ADV velocities,even in cases of high noise.They eliminate the noise floor at high frequencies of the velocity spectra,leading to a longer range that effectively fits the Kolmogorov-5/3 slope at midrange frequencies.After de-noising adopting the two methods,the values of the mean velocity are almost unchanged,while the root-mean-square horizontal velocities and thus turbulent kinetic energy decrease appreciably in these experiments.The Reynolds stress is also affected by high noise levels,and de-noising thus reduces uncertainties in estimating the Reynolds stress. 展开更多
关键词 noise Kalman filtering autoregressive moving average model TURBULENCE acoustic Doppler velocimeter
在线阅读 下载PDF
Parameters optimization for exponentially weighted moving average control chart using generalized regression neural network
4
作者 梁宗保 《Journal of Chongqing University》 CAS 2006年第3期131-136,共6页
As a useful alternative of Shewhart control chart, exponentially weighted moving average (EWMA) control chat has been applied widely to quality control, process monitoring, forecast, etc. In this paper, a method was... As a useful alternative of Shewhart control chart, exponentially weighted moving average (EWMA) control chat has been applied widely to quality control, process monitoring, forecast, etc. In this paper, a method was introduced for optimal design of EWMA and multivariate EWMA (MEWMA) control charts, in which the optimal parameter pair ( λ, k) or ( λ, h ) was searched by using the generalized regression neural network (GRNN). The results indicate that the optimal parameter pair can be obtained effectively by the proposed strategy for a given in-control average running length (ARLo) and shift to detect under any conditions, removing the drawback of incompleteness existing in the tables that had been reported. 展开更多
关键词 parameter optimization exponentially weighted moving average control chart generalized regression neural network
在线阅读 下载PDF
Deep Learning-Based Stock Price Prediction Using LSTM Model
5
作者 Jiayi Mao Zhiyong Wang 《Proceedings of Business and Economic Studies》 2024年第5期176-185,共10页
The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the ... The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the inception of financial markets.By examining historical transaction data,latent opportunities for profit can be uncovered,providing valuable insights for both institutional and individual investors to make more informed decisions.This study focuses on analyzing historical transaction data from four banks to predict closing price trends.Various models,including decision trees,random forests,and Long Short-Term Memory(LSTM)networks,are employed to forecast stock price movements.Historical stock transaction data serves as the input for training these models,which are then used to predict upward or downward stock price trends.The study’s empirical results indicate that these methods are effective to a degree in predicting stock price movements.The LSTM-based deep neural network model,in particular,demonstrates a commendable level of predictive accuracy.This conclusion is reached following a thorough evaluation of model performance,highlighting the potential of LSTM models in stock market forecasting.The findings offer significant implications for advancing financial forecasting approaches,thereby improving the decision-making capabilities of investors and financial institutions. 展开更多
关键词 autoregressive integrated moving average(ARIMA)model Long Short-Term Memory(LSTM)network Forecasting Stock market
在线阅读 下载PDF
基于SARIMA-SVM模型的季节性PM_(2.5)浓度预测
6
作者 宋英华 徐亚安 张远进 《计算机工程》 北大核心 2025年第1期51-59,共9页
空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARI... 空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARIMA-SVM)融合模型。该融合模型为串联型融合模型,将数据拆分为线性部分与非线性部分。SARIMA模型在差分自回归滑动平均(ARIMA)模型的基础上增加了季节性因素提取参数,能有效分析PM_(2.5)浓度数据的季节性规律变化趋势,较好地预测数据未来的线性变化趋势。结合SVM模型对预测数据的残差序列进行优化,利用滑动步长预测法确定残差序列的最优预测步长,通过网格搜索确定最优模型参数,实现对PM_(2.5)浓度数据的长期预测,同时提高整体预测精度。通过对武汉市近5年的PM_(2.5)浓度监测数据进行分析,结果表明该融合模型的预测准确率相较于单一模型有很大提升,在相同的实验环境下比单一的ARIMA、Auto ARIMA、SARIMA模型分别提升了99%、99%、98%,稳定性也更好,为PM_(2.5)浓度预测研究提供了新的思路。 展开更多
关键词 季节性差分自回归滑动平均 支持向量机 融合模型 PM_(2.5)浓度 季节性预测
在线阅读 下载PDF
模型和数据联合驱动的ARIMA-IDSSA-LSSVM建筑安全事故预测
7
作者 曹红梅 陈元 《自然灾害学报》 北大核心 2025年第2期129-139,共11页
针对传统单一模型在解决建筑安全事故预测问题存在精度低等问题,考虑模型和数据联合驱动方式,提出一种结合差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和改进的自适应樽海鞘优化最小二乘支持向量机(improv... 针对传统单一模型在解决建筑安全事故预测问题存在精度低等问题,考虑模型和数据联合驱动方式,提出一种结合差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和改进的自适应樽海鞘优化最小二乘支持向量机(improved adaptive salp swarm algorithm optimized least squares support vector machine,IDSSA-LSSVM)的组合预测模型。首先利用ARIMA模型获得时序数据中线性部分,利用IDSSA-LSSVM模型分析ARIMA模型获得的残差,获得时序数据中非线性部分;然后通过线性部分和非线性部分相加获得最终组合预测值;最后通过2010—2020年房屋市政工程生产安全事故数据对所提算法进行验证。结果表明,所提预测模型在E_(rmse)上较其他算法分别下降73.73%、77.21%、46.09%、46.80%、78.19%,在E_(mae)上较其他算法分别下降74.20%、77.44%、48.15%、48.85%、77.50%,在E_(mape)上较其他算法分别下降84.95%、87.77%、75.97%、88.49%、80.27%。在不同规模的数据集下,文中算法在E_(rmse)指标下均最优。同时能够通过预测未来阶段事故,提供辅助决策。表明ARIMA-SSA-LSSVM组合模型能够充分挖掘建筑安全事故数据的隐藏信息,在准确性、泛化性和应用性3个角度均表现不错,优势明显。 展开更多
关键词 建筑安全 事故预测 联合驱动 差分自回归移动平均模型 支持向量机
在线阅读 下载PDF
基于自回归积分滑动平均模型的无线传感网络通信传输信号延迟消除方法
8
作者 崔蕾 王同 《传感技术学报》 北大核心 2025年第3期543-549,共7页
为了解决受环境影响无线传感网络通信传输信号的延迟问题,提出了一种传输信号延迟消除的方法。将自回归积分滑动平均模型(ARIMA)和小波神经网络(WNN)相结合,进行通信传输信号延迟的组合预测。根据延迟预测结果设计传输信号延迟消除流程... 为了解决受环境影响无线传感网络通信传输信号的延迟问题,提出了一种传输信号延迟消除的方法。将自回归积分滑动平均模型(ARIMA)和小波神经网络(WNN)相结合,进行通信传输信号延迟的组合预测。根据延迟预测结果设计传输信号延迟消除流程的步骤和约束条件,并以此构建无线传感网络通信传输的优化目标函数,引入免疫克隆蛙跳算法对目标函数进行求解,获取最优的传输方案。仿真分析表明,所提方法的延迟预测误差和端到端延迟误差低于0.01 s,能量消耗最大值为6.4 W,平均丢包率最大值为0.286%。上述结果证明了所提方法可以有效准确预测和消除无线传感网络通信传输信号延迟。 展开更多
关键词 无线传感网络 传输信号 延迟消除 自回归积分滑动平均模型 小波神经网络
在线阅读 下载PDF
适合西藏地区的归一化植被指数预测模型构建及验证
9
作者 孟慧美 吴凌霄 +1 位作者 宣越健 米玛旺堆 《气候与环境研究》 北大核心 2025年第2期199-211,共13页
基于差分自回归移动平均(ARIMA)方法、随机森林(RF)方法、Prophet方法构建适合西藏地区的归一化植被指数(Normalized Difference Vegetation Index,NDVI)预测模型,利用羊八井地区2000~2021年MODIS遥感NDVI数据进行了验证,结果表明:该地... 基于差分自回归移动平均(ARIMA)方法、随机森林(RF)方法、Prophet方法构建适合西藏地区的归一化植被指数(Normalized Difference Vegetation Index,NDVI)预测模型,利用羊八井地区2000~2021年MODIS遥感NDVI数据进行了验证,结果表明:该地区植被覆盖率总体呈现不明显减少趋势;3个预测模型中,RF预测精度最高,其归一化均方根误差、平均绝对百分比误差、决定系数,分别达到了6.92%、4.04%、0.9;小波变换方法能有效提高模型预测精度;组合模型可以提高预测精度,其中误差倒数权重组合模型优于平均权重和方差倒数加权组合模型。因此可以利用RF等机器学习方法结合小波变换、组合模型在西藏地区进行NDVI预测,为生态环境保护和农牧业生产决策提供科学指导。 展开更多
关键词 归一化植被指数(NDVI)预测模型 随机森林(RF)方法 差分自回归移动平均(ARIMA)方法 Prophet方法 小波变换
在线阅读 下载PDF
改进EWMA和多通道混合模型的锂电池容量预测
10
作者 叶震 李琨 +2 位作者 李梦男 吴聪 高宏宇 《机械科学与技术》 北大核心 2025年第3期513-520,共8页
针对锂电池在长期循环充放操作后,其剩余可用容量难以准确预测的问题,提出一种改进EWMA(Exponentially weighted moving average)和多通道混合模型的锂电池可用容量预测方法。提取锂电池充电、放电阶段的电压、电流等特性参量,选取其中... 针对锂电池在长期循环充放操作后,其剩余可用容量难以准确预测的问题,提出一种改进EWMA(Exponentially weighted moving average)和多通道混合模型的锂电池可用容量预测方法。提取锂电池充电、放电阶段的电压、电流等特性参量,选取其中与容量相关性较高的特征作为健康因子,利用改进EWMA方法对容量数据及健康因子进行滤波,以减少随机短暂的容量回升现象造成的负面影响,将滤波后的健康因子作为特征向量输入到多通道CNN-BiLSTM-SE混合模型中进行预测。采用CALCE实验中心锂电池数据集进行验证,3组锂电池训练预测数据均采用50%的比例划分,预测结果的平均RMSE(Root mean square error,记为ERMS)达到0.014。 展开更多
关键词 EWMA CNN BiLSTM 混合预测模型 电池容量预测
在线阅读 下载PDF
云南省孕产妇死亡率预测模型的构建与评估
11
作者 赵珊 高赛 +3 位作者 李堂春 赵钟鸣 吴亚婷 郑敏 《昆明医科大学学报》 2025年第2期110-117,共8页
目的构建并评估云南省孕产妇死亡率预测模型,预测2024—2030年云南省孕产妇死亡率。方法基于1994—2023年云南省孕产妇死亡率,构建灰色预测模型和差分自回归移动平均模型,选择平均绝对误差、均方误差和均方根误差比较两种模型回代拟合效... 目的构建并评估云南省孕产妇死亡率预测模型,预测2024—2030年云南省孕产妇死亡率。方法基于1994—2023年云南省孕产妇死亡率,构建灰色预测模型和差分自回归移动平均模型,选择平均绝对误差、均方误差和均方根误差比较两种模型回代拟合效果,使用最优模型预测2024—2030年云南省孕产妇死亡率。结果1994—2023年云南省孕产妇死亡率整体呈持续下降趋势(χ2=50170.0,P<0.05),构建的灰色预测模型和差分自回归移动平均模型平均绝对误差、均方误差和均方根误差分别为2.424、12.389、3.519和3.966、27.651、5.258,灰色预测模型的预测效果优于差分自回归移动平均模型,后验差比值C=0.079,小概率误差P=1,预测精确度为1级。用灰色预测模型预测2024—2030年云南省孕产妇死亡率分别为10.05/10万、9.16/10万、8.34/10万、7.59/10万、6.91/10万、6.30/10万、5.73/10万。结论灰色预测模型对云南省孕产妇死亡率有较好预测效果。经预测,云南省2030年孕产妇死亡率能达到《健康中国“2030”规划纲要》《中国妇女发展纲要(2021—2030年)》《云南妇女发展规划(2021—2030年)》中的孕产妇死亡率控制目标。 展开更多
关键词 孕产妇死亡率 灰色预测模型 差分自回归移动平均模型 预测
在线阅读 下载PDF
变分模态分解与时间序列模型相结合的结构损伤识别方法研究
12
作者 姚小俊 孙守鹏 +1 位作者 王强 杨小梅 《振动与冲击》 北大核心 2025年第5期131-139,217,共10页
针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先... 针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先,利用自回归模型功率谱确定初始频率及需要分解的模态数量,接着通过VMD方法将振动非平稳信号初步分解为多个平稳的分量信号;然后,利用ARIMA模型来拟合各阶信号分量,获取模型残差,再利用ARIMA拟合模型信号分量得到的模型残差确定损伤的具体时刻;最后,利用主成分分析法获取结构的模态振型,构造一个基于频率与振型的损伤指标,结合损伤阈值定位出损伤位置。该方法通过地震激励下十自由度框架模拟算例以及实际简支钢桁梁桥数据进行分析。结果证实,该方法能够用于平稳及非平稳激励下的结构损伤时刻和损伤位置的定位。 展开更多
关键词 损伤识别 变分模态分解(VMD) 差分整合移动平均自回归(ARIMA)模型 自回归模型功率谱 模型残差
在线阅读 下载PDF
基于变分模态分解与组合模型的导线载流量预测
13
作者 罗朝丰 黄晓剑 +4 位作者 陆璐 马波 王一帆 董心怡 鲍修齐 《电工电气》 2025年第4期20-27,45,共9页
输电线路实时运行载流量存在随机性强、波动性大的特点,现有载流量预测方法未深度挖掘时间序列特征。提出一种基于变分模态(VMD)分解载流量、自回归滑动平均模型(ARMA)与双向长短期记忆网络(BiLSTM)组合的载流量预测方法,采用VMD算法将... 输电线路实时运行载流量存在随机性强、波动性大的特点,现有载流量预测方法未深度挖掘时间序列特征。提出一种基于变分模态(VMD)分解载流量、自回归滑动平均模型(ARMA)与双向长短期记忆网络(BiLSTM)组合的载流量预测方法,采用VMD算法将载流量时间序列分解为多尺度的平稳分量和非平稳的残差分量,采用ARMA模型对平稳分量进行短期预测,采用BiLSTM模型对残差分量进行预测,将分量预测值叠加获得预测结果。测试结果显示,该预测方法的平均绝对百分比误差2.87%、均方根误差1.710 A、平均误差1.531 A,预测值与真实值拟合效果较好。 展开更多
关键词 载流量预测 变分模态分解 自回归滑动平均模型 双向长短期记忆网络
在线阅读 下载PDF
基于ASO-MLP神经网络的大气加权平均温度模型
14
作者 赵雪珍 陈悦文 《测绘与空间地理信息》 2025年第1期82-85,共4页
为了得到高精度的本地大气加权平均温度(T_(m))模型,本文在多层感知(MLP)神经网络模型的基础上引入原子搜索优化(ASO)算法,构建ASO-MLP模型。将气象参数作为模型的输入因子,在此基础上使用ASO算法对模型的权值与阈值参数进行寻优。利用... 为了得到高精度的本地大气加权平均温度(T_(m))模型,本文在多层感知(MLP)神经网络模型的基础上引入原子搜索优化(ASO)算法,构建ASO-MLP模型。将气象参数作为模型的输入因子,在此基础上使用ASO算法对模型的权值与阈值参数进行寻优。利用东北地区6个探空站数据进行模型训练并进行后一年T_(m)预测,实验结果表明,本文提出的ASO-MLP模型的T_(m)预测结果的Bias为-0.05 K,RMSE为4.07 K,R^(2)为0.931,较对比模型具有更好的精度指标,拟合度更高。本文针对东北地区的本地化T_(m)模型研究可为地基反演大气可降水量提供支持。 展开更多
关键词 大气加权平均温度 MLP神经网络模型 原子搜索优化算法 大气可降水量
在线阅读 下载PDF
Modeling and predicting dengue fever cases in key regions of the Philippines using remote sensing data 被引量:2
15
作者 Maria Ruth B.Pineda-Cortel Benjie M.Clemente Pham Thi Thanh Nga 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2019年第2期60-66,共7页
Objective: To correlate climatic and environmental factors such as land surface temperature, rainfall, humidity and normalized difference vegetation index with the incidence of dengue to develop prediction models for ... Objective: To correlate climatic and environmental factors such as land surface temperature, rainfall, humidity and normalized difference vegetation index with the incidence of dengue to develop prediction models for the Philippines using remote-sensing data.Methods: Timeseries analysis was performed using dengue cases in four regions of the Philippines and monthly climatic variables extracted from Global Satellite Mapping of Precipitation for rainfall, and MODIS for the land surface temperature and normalized difference vegetation index from 2008-2015.Consistent dataset during the period of study was utilized in Autoregressive Integrated Moving Average models to predict dengue incidence in the four regions being studied.Results: The best-fitting models were selected to characterize the relationship between dengue incidence and climate variables.The predicted cases of dengue for January to December 2015 period fitted well with the actual dengue cases of the same timeframe.It also showed significantly good linear regression with a square of correlation of 0.869 5 for the four regions combined.Conclusion: Climatic and environmental variables are positively associated with dengue incidence and suit best as predictor factors using Autoregressive Integrated Moving Average models.This finding could be a meaningful tool in developing an early warning model based on weather forecasts to deliver effective public health prevention and mitigation programs. 展开更多
关键词 Dengue fever Climate change Remote sensing data autoregressive Integrated moving average models
在线阅读 下载PDF
Modelling the prevalence of hepatitis C virus amongst blood donors in Libya:An investigation of providing a preventive strategy 被引量:1
16
作者 Mohamed A Daw Amira Shabash +3 位作者 Abdallah El-Bouzedi Aghnya A Dau Moktar Habas Libyan Study Group of Hepatitis and HIV 《World Journal of Virology》 2016年第1期14-22,共9页
AIM: To determine hepatitis C virus(HCV) seroprevalence among the Libyan population using blood donors and applying the autoregressive integrated moving average(ARIMA) model to predict future trends and formulate plan... AIM: To determine hepatitis C virus(HCV) seroprevalence among the Libyan population using blood donors and applying the autoregressive integrated moving average(ARIMA) model to predict future trends and formulate plans to minimize the burden of HCV infection.METHODS: HCV positive cases were collected from 1008214 healthy blood donors over a 6-year period from 2008 to 2013. Data were used to construct the ARIMA model to forecast HCV seroprevalence among blood donors. The validity of the model was assessed using the mean absolute percentage error between the observed and fitted seroprevalence. The fitted ARIMA model was used to forecast the incidence of HCV beyond the observed period for the year 2014 and further to 2055.RESULTS: The overall prevalence of HCV among blood donors was 1.8%, varying over the study period from 1.7% to 2.5%, though no significant variation was found within each calendar year. The ARIMA model showed a non-significant auto-correlation of the residuals, and the prevalence was steady within the last 3 years as expressed by the goodness-of-fit test. The forecast incidence showed an increase in HCV seropositivity in 2014, ranging from 500 to 700 per 10000 population, with an overall prevalence of 2.3%-2.7%. This may be extended to 2055 with minimal periodical variation within each 6-year period.CONCLUSION: The applied model was found to be valuable in evaluating the seroprevalence of HCV among blood donors, and highlighted the growing burden of such infection on the Libyan health care system. The model may help in formulating national policies to prevent increases in HCV infection and plan future strategies that target the consequences of the infection. 展开更多
关键词 autoregressive integrated moving average model Libya HEPATITIS C virus Blood DONORS
在线阅读 下载PDF
Autoregressive moving average model for matrix time series
17
作者 Shujin Wu Ping Bi 《Statistical Theory and Related Fields》 CSCD 2023年第4期318-335,共18页
In the paper,the autoregressive moving average model for matrix time series(MARMA)is inves-tigated.The properties of the MARMA model are investigated by using the conditional least square estimation,the conditional ma... In the paper,the autoregressive moving average model for matrix time series(MARMA)is inves-tigated.The properties of the MARMA model are investigated by using the conditional least square estimation,the conditional maximum likelihood estimation,the projection theorem in Hilbert space and the decomposition technique of time series,which include necessary and suf-ficient conditions for stationarity and invertibility,model parameter estimation,model testing and model forecasting. 展开更多
关键词 Matrix time series autoregressive moving average model bilinear model statistical inference
原文传递
计及SOC自恢复的混合储能平抑风电功率波动控制 被引量:11
18
作者 林莉 林雨露 +3 位作者 谭惠丹 贾源琦 孔宪宇 曹雅裴 《电工技术学报》 EI CSCD 北大核心 2024年第3期658-671,共14页
混合储能系统能够较好地应对复杂的风电波动,有效地提高电网的稳定性和安全性。在混合储能平抑风电功率波动的典型应用场景下,该文首先提出一种计及荷电状态(SOC)自恢复的混合储能平抑风电功率波动控制方法,在满足风电平抑需求的情况下... 混合储能系统能够较好地应对复杂的风电波动,有效地提高电网的稳定性和安全性。在混合储能平抑风电功率波动的典型应用场景下,该文首先提出一种计及荷电状态(SOC)自恢复的混合储能平抑风电功率波动控制方法,在满足风电平抑需求的情况下,通过模型预测控制快速调节储能在平抑功率过程中的荷电状态,提高储能持续稳定运行能力;然后,为提高混合储能系统协调运行能力,设计了加权滑动平均(WMA)-模糊控制策略对超级电容和蓄电池功率进行动态分配;最后,结合实际风电功率数据,通过仿真验证了所提策略能有效平衡储能寿命和平抑风电波动的矛盾,能充分考虑两种储能设备的特性差异并提高功率分配的合理性。 展开更多
关键词 风电功率波动 混合储能 模型预测控制 加权滑动平均 模糊控制
在线阅读 下载PDF
基于改进JRD及误差修正的轴承剩余寿命预测方法 被引量:1
19
作者 刘玉山 张旭帮 +2 位作者 王灵梅 孟恩隆 郭东杰 《机电工程》 北大核心 2024年第1期72-80,共9页
目前,风电机组齿轮箱性能发生初始退化时难以识别,现有退化指标易出现剧烈波动、单调性较差,且无法准确预测齿轮箱关键部件如轴承的剩余使用寿命(RUL),针对该问题,提出了一种基于改进杰森-瑞丽散度(JRD)及误差修正的双指数模型轴承RUL... 目前,风电机组齿轮箱性能发生初始退化时难以识别,现有退化指标易出现剧烈波动、单调性较差,且无法准确预测齿轮箱关键部件如轴承的剩余使用寿命(RUL),针对该问题,提出了一种基于改进杰森-瑞丽散度(JRD)及误差修正的双指数模型轴承RUL预测方法。首先,提取了振动信号样本的多域特征指标,利用高斯混合模型(GMM)与指数型权重JRD,得到了样本的后验概率分布向量,再经归一化处理得到置信值(CV);然后,对轴承从初始健康状态退化至当前检查时刻的CV值进行了相空间重构,提取了CV序列的动力学特征,并将其作为相关向量机(RVM)的训练集,获得了支撑整个退化轨迹的相关向量;最后,利用双指数模型拟合了相关向量,外推趋势至失效门限以计算RUL,并引入了差分整合移动平均自回归模型(ARIMA),对拟合相关向量产生的拟合误差进行了预测,以修正预测的结果。实验结果表明:改进后的退化指标单调性指标提高14.3%;且在不同工况、不同时刻下,经误差修正后的轴承的RUL预测结果较未修正之前有明显提高。研究结果表明:该预测方法可为风电机组齿轮箱重要部件的预测性维护提供参考。 展开更多
关键词 滚动轴承 剩余使用寿命预测 高斯混合模型 杰森-瑞丽散度 误差修正 双指数模型 置信值 差分整合移动平均自回归模型
在线阅读 下载PDF
基于小波分解和ARIMA-GARCH-GRU组合模型的制造业PMI预测 被引量:1
20
作者 陆文星 任环宇 +1 位作者 梁昌勇 李克卿 《工业工程》 2024年第1期86-95,127,共11页
制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过... 制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过小波变换,由整合移动平均自回归–广义自回归条件异方差模型(ARIMA-GARCH)处理稳态低频数据,门控循环单元(GRU)处理波动性强的高频数据,将各频段预测结果进行融合得到最终预测结果。为验证模型有效性,选取一定数据量的PMI指数进行实验。结果表明,与其他常见模型对比,本文构建的组合模型具有较好的预测精度与性能,平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)分别达到0.00329、0.004162、0.65%。 展开更多
关键词 采购经理人指数(PMI) 小波分解 整合移动平均自回归模型(ARIMA) 广义的自回归条件异方差模型(GARCH) 门控循环单元(GRU)
在线阅读 下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部