For the constrained nonlinear optimal control problem, by taking the first term of Taylor series, the dynamic equation is linearized. Thus by, introducing into the dual variable (Lagrange multiplier vector), the dynam...For the constrained nonlinear optimal control problem, by taking the first term of Taylor series, the dynamic equation is linearized. Thus by, introducing into the dual variable (Lagrange multiplier vector), the dynamic equation can be transformed into Hamilton system from Lagrange system on the basis of the original variable. Under the whole state, the problem discussed can be described from a new view, and the equation can be precisely solved by, the time precise integration method established in linear dynamic system. A numerical example shows the effectiveness of the method.展开更多
The transformation between time and space is discussed. To improve real-time response speed of intelligent measuring system, the concept of exchanging program execution time with more circuitry is presented working in...The transformation between time and space is discussed. To improve real-time response speed of intelligent measuring system, the concept of exchanging program execution time with more circuitry is presented working in cycle mode. Displacement measuring by magnification is achieved with period measurement by magnification. To change the condition that traditional precision measurement depends on machining precision greatly, the concept of measuring space with time and theory of time-space coordinate transformation are proposed. Guided by the idea of measuring space with time, differential frequency measurement system and time grating displacement sensor are developed based on the proposed novel methods. And high-precision measurement is achieved without high-precision manufacture, which embeds the remarkable characteristics of low cost but high precision to the devices. Experiment and test results conform the validity of the proposed time-space concept.展开更多
In order to meet the needs of work in numerical weather forecast and in numerical simulations for climate change and ocean current, a kind of difference scheme in high precision in the time direction developed from th...In order to meet the needs of work in numerical weather forecast and in numerical simulations for climate change and ocean current, a kind of difference scheme in high precision in the time direction developed from the completely square-conservative difference scheme in explicit way is built by means of the Taylor expansion. A numerical test with 4-wave Rossby-Haurwitz waves on them and an application of them on the monthly mean current the of South China Sea are carried out, from which, it is found that not only do the new schemes have high harmony and approximate precision but also can the time step of the schemes be lengthened and can much computational time be saved. Therefore, they are worth generalizing and applying.展开更多
This paper introduces a real-time high precision measurement of phase difference based on Field Programmable Gate Array(FPGA) technology,which has been successfully applied to laser grating interference measurement ...This paper introduces a real-time high precision measurement of phase difference based on Field Programmable Gate Array(FPGA) technology,which has been successfully applied to laser grating interference measurement and real-time feedback of plasma electron density in HL-2A tokamak.It can track the changes of electron density while setting the starting point of the density curve to zero.In a laboratory test,the measuring accuracy of phase difference is less than 0.1°,the time resolution is 80 ns,and the feedback delay is 180 μs.展开更多
It has been proved recently that the spike timing can play an important role in information transmission, so in this paper we develop a network with N-unlt FitzHugh-Nagumo neurons coupled by gap junctions and discuss ...It has been proved recently that the spike timing can play an important role in information transmission, so in this paper we develop a network with N-unlt FitzHugh-Nagumo neurons coupled by gap junctions and discuss the dependence of the spike timing precision on synaptic coupling strength, the noise intensity and the size of the neuron ensemble. The calculated results show that the spike timing precision decreases as the noise intensity increases; and the ensemble spike timing precision increases with coupling strength increasing. The electric synapse coupling has a more important effect on the spike timing precision than the chemical synapse coupling.展开更多
Experimental and theoretical studies have reported that the precise firing of neurons is crucial for sensory representation.Autapse serves as a special synapse connecting neuron and itself,which has also been found to...Experimental and theoretical studies have reported that the precise firing of neurons is crucial for sensory representation.Autapse serves as a special synapse connecting neuron and itself,which has also been found to improve the accuracy of neuronal response.In current work,the effect of autaptic delay signal on the spike-timing precision is investigated on a single autaptic Hodgkin–Huxley neuron in the present of noise.The simulation results show that both excitatory and inhibitory autaptic signals can effectively adjust the precise spike time of neurons with noise by choosing the appropriate coupling strength g and time delay of autaptic signalτ.The g–τparameter space is divided into two regions:one is the region where the spike-timing precision is effectively regulated;the other is the region where the neuronal firing is almost not regulated.For the excitatory and inhibitory autapse,the range of parameters causing the accuracy of neuronal firing is different.Moreover,it is also found that the mechanisms of the spike-timing precision regulation are different for the two kinds of autaptic signals.展开更多
By using the precise integration method, the numerical solution of linear quadratic Gaussian (LQG) optimal control problem was discussed. Based on the separation principle, the LQG central problem decomposes, or separ...By using the precise integration method, the numerical solution of linear quadratic Gaussian (LQG) optimal control problem was discussed. Based on the separation principle, the LQG central problem decomposes, or separates, into an optimal state-feedback control problem and an optimal state estimation problem. That is the off-line solution of two sets of Riccati differential equations and the on-line integration solution of the state vector from a set of time-variant differential equations. The present algorithms are not only appropriate to solve the two-point boundary-value problem and the corresponding Riccati differential equation, but also can be used to solve the estimated state from the time-variant differential equations. The high precision of precise integration is of advantage for the control and estimation. Numerical examples demonstrate the high precision and effectiveness of the algorithm.展开更多
High-precision time transfer plays an important role in the areas of fundamental research and applications. Accompanying w ith the remarkable improvements in the ability of generating and measuring high-accuracy time-...High-precision time transfer plays an important role in the areas of fundamental research and applications. Accompanying w ith the remarkable improvements in the ability of generating and measuring high-accuracy time-frequency signal,seeking for new time-transfer techniques betw een distant clocks w ith much further improved accuracy attracts attentions w orld-w idely. The time-transfer technique based on optical pulses has the highest precision presently,and the further improvement in the accuracy is heavily dependent on the time-domain properties of the pulse as w ell as the sensitivity of the applied measurement on the exchanged pulse. The application of optical frequency comb in time transfer for a precision up to femtosecond level are currently the focus of much interest,and has recently achieved many breakthroughs. Further investigations show that,utilizing quantum techniques,i.e. quantum measurement technique and quantum optical pulse source,can lead to a new limit on the measured timing information. Furthermore,it can be immune from atmospheric parameters,such as pressure,temperature,humidity and so on.Such quantum improvements on time-transfer have a bright prospect in the future applications requiring extremely high-accuracy timing and ranging. The potential achievements w ill form a technical basis for the future realization of sub-femtosecond time transfer system.展开更多
Dual-comb interferometric systems with high time accuracy have been realized for various applications.The flourishing ultralow noise dual-comb system promotes the measurement and characterization of relative timing ji...Dual-comb interferometric systems with high time accuracy have been realized for various applications.The flourishing ultralow noise dual-comb system promotes the measurement and characterization of relative timing jitter,thus improving time accuracy.With optical solutions,introducing an optical reference enables 105 harmonics measurements,thereby breaking the limit set by electrical methods;nonlinear processes or spectral interference schemes were also employed to track the relative timing jitter.However,such approaches operating in the time domain either require additional continuous references or impose stringent requirements on the amount of timing jitter.We propose a scheme to correct the relative timing jitter of a free-running dual-comb interferometry assisted by a Fabry-Pérot(F-P)cavity in the frequency domain.With high wavelength thermal stability provided by the F-P cavity,the absolute wavelength deviation in the operating bandwidth is compressed to<0.4 pm,corresponding to a subpicosecond sensitivity of pulse-to-pulse relative timing jitter.Also,Allan deviation of 10^(-10) is obtained under multiple coherent averaging,which lays the foundation for mode-resolved molecular spectroscopic applications.The spectral absorption features of hydrogen cyanide gas molecules at ambient temperature were measured and matched to the HITRAN database.Our scheme promises to provide new ideas on sensitive measurements of relative timing jitter.展开更多
The accurate identification of delay time in millisecond blasting plays an important role in the optimization of blasting design and reduction of vibration effect. Through a case study of a surge shaft blasting projec...The accurate identification of delay time in millisecond blasting plays an important role in the optimization of blasting design and reduction of vibration effect. Through a case study of a surge shaft blasting project, the capability of the EMD (empirical mode decomposition) method in identifying the delay time of short millisecond blasting with precise initiation was compared with the instantaneous energy method based on Hilbert-Huang transform (HHT). The recognition rate of the EMD method was more than 80%, while the instantaneous energy method was less than 25%. By analyzing the instantaneous energy of single-hole blasting signal, it was found that the instantaneous energy method was adaptable to millisecond blasting with delay time longer than half of the energy peak period. The EMD method was used to identify delay time of millisecond blasting in Zijinshan open-pit mine. According to the identification results, the blasting parameters were optimized for controlling the blast-induced vibration and reducing the large block ratio. The field data showed that the velocity peak of ground vibration was reduced by more than 30%under almost the same maximum charge per delay by the optimization of delay time and detonating detonators. Combining with slag-remaining blasting and burden optimization of the first row, the large block ratio was reduced to less than 3%. The research results proved that the identification method based on HHT was feasible to optimize the blasting design. The identification method is also of certain reference value for design optimization of other similar blasting projects.展开更多
文摘For the constrained nonlinear optimal control problem, by taking the first term of Taylor series, the dynamic equation is linearized. Thus by, introducing into the dual variable (Lagrange multiplier vector), the dynamic equation can be transformed into Hamilton system from Lagrange system on the basis of the original variable. Under the whole state, the problem discussed can be described from a new view, and the equation can be precisely solved by, the time precise integration method established in linear dynamic system. A numerical example shows the effectiveness of the method.
基金National Natural Science Foundation of China(No.59575095,No.59675089,No.50075091,No.50575235)
文摘The transformation between time and space is discussed. To improve real-time response speed of intelligent measuring system, the concept of exchanging program execution time with more circuitry is presented working in cycle mode. Displacement measuring by magnification is achieved with period measurement by magnification. To change the condition that traditional precision measurement depends on machining precision greatly, the concept of measuring space with time and theory of time-space coordinate transformation are proposed. Guided by the idea of measuring space with time, differential frequency measurement system and time grating displacement sensor are developed based on the proposed novel methods. And high-precision measurement is achieved without high-precision manufacture, which embeds the remarkable characteristics of low cost but high precision to the devices. Experiment and test results conform the validity of the proposed time-space concept.
文摘In order to meet the needs of work in numerical weather forecast and in numerical simulations for climate change and ocean current, a kind of difference scheme in high precision in the time direction developed from the completely square-conservative difference scheme in explicit way is built by means of the Taylor expansion. A numerical test with 4-wave Rossby-Haurwitz waves on them and an application of them on the monthly mean current the of South China Sea are carried out, from which, it is found that not only do the new schemes have high harmony and approximate precision but also can the time step of the schemes be lengthened and can much computational time be saved. Therefore, they are worth generalizing and applying.
基金supported by National Natural Science Foundation of China(Nos.11375195,11075048)the National Magnetic Confinement Fusion Science Program of China(No.2013GB104003)
文摘This paper introduces a real-time high precision measurement of phase difference based on Field Programmable Gate Array(FPGA) technology,which has been successfully applied to laser grating interference measurement and real-time feedback of plasma electron density in HL-2A tokamak.It can track the changes of electron density while setting the starting point of the density curve to zero.In a laboratory test,the measuring accuracy of phase difference is less than 0.1°,the time resolution is 80 ns,and the feedback delay is 180 μs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10375016 and 10474018) and the Natural Science Foundation of Hebei Province (Grant Nos C2005000011and A2004000005) and the Key Subject Construction Project of Hebei Provincial University.
文摘It has been proved recently that the spike timing can play an important role in information transmission, so in this paper we develop a network with N-unlt FitzHugh-Nagumo neurons coupled by gap junctions and discuss the dependence of the spike timing precision on synaptic coupling strength, the noise intensity and the size of the neuron ensemble. The calculated results show that the spike timing precision decreases as the noise intensity increases; and the ensemble spike timing precision increases with coupling strength increasing. The electric synapse coupling has a more important effect on the spike timing precision than the chemical synapse coupling.
基金the Fundamental Research Funds for the Central Universities,China(Grant No.GK201903020)the National Natural Science Foundation of China(Grant No.12005006)Scientific research project of Education Department of Gansu Province,China(Grant No.2016A-049).
文摘Experimental and theoretical studies have reported that the precise firing of neurons is crucial for sensory representation.Autapse serves as a special synapse connecting neuron and itself,which has also been found to improve the accuracy of neuronal response.In current work,the effect of autaptic delay signal on the spike-timing precision is investigated on a single autaptic Hodgkin–Huxley neuron in the present of noise.The simulation results show that both excitatory and inhibitory autaptic signals can effectively adjust the precise spike time of neurons with noise by choosing the appropriate coupling strength g and time delay of autaptic signalτ.The g–τparameter space is divided into two regions:one is the region where the spike-timing precision is effectively regulated;the other is the region where the neuronal firing is almost not regulated.For the excitatory and inhibitory autapse,the range of parameters causing the accuracy of neuronal firing is different.Moreover,it is also found that the mechanisms of the spike-timing precision regulation are different for the two kinds of autaptic signals.
文摘By using the precise integration method, the numerical solution of linear quadratic Gaussian (LQG) optimal control problem was discussed. Based on the separation principle, the LQG central problem decomposes, or separates, into an optimal state-feedback control problem and an optimal state estimation problem. That is the off-line solution of two sets of Riccati differential equations and the on-line integration solution of the state vector from a set of time-variant differential equations. The present algorithms are not only appropriate to solve the two-point boundary-value problem and the corresponding Riccati differential equation, but also can be used to solve the estimated state from the time-variant differential equations. The high precision of precise integration is of advantage for the control and estimation. Numerical examples demonstrate the high precision and effectiveness of the algorithm.
文摘High-precision time transfer plays an important role in the areas of fundamental research and applications. Accompanying w ith the remarkable improvements in the ability of generating and measuring high-accuracy time-frequency signal,seeking for new time-transfer techniques betw een distant clocks w ith much further improved accuracy attracts attentions w orld-w idely. The time-transfer technique based on optical pulses has the highest precision presently,and the further improvement in the accuracy is heavily dependent on the time-domain properties of the pulse as w ell as the sensitivity of the applied measurement on the exchanged pulse. The application of optical frequency comb in time transfer for a precision up to femtosecond level are currently the focus of much interest,and has recently achieved many breakthroughs. Further investigations show that,utilizing quantum techniques,i.e. quantum measurement technique and quantum optical pulse source,can lead to a new limit on the measured timing information. Furthermore,it can be immune from atmospheric parameters,such as pressure,temperature,humidity and so on.Such quantum improvements on time-transfer have a bright prospect in the future applications requiring extremely high-accuracy timing and ranging. The potential achievements w ill form a technical basis for the future realization of sub-femtosecond time transfer system.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFF0705904)the National Natural Science Foundation of China(Grant Nos.61927817 and 62075072).
文摘Dual-comb interferometric systems with high time accuracy have been realized for various applications.The flourishing ultralow noise dual-comb system promotes the measurement and characterization of relative timing jitter,thus improving time accuracy.With optical solutions,introducing an optical reference enables 105 harmonics measurements,thereby breaking the limit set by electrical methods;nonlinear processes or spectral interference schemes were also employed to track the relative timing jitter.However,such approaches operating in the time domain either require additional continuous references or impose stringent requirements on the amount of timing jitter.We propose a scheme to correct the relative timing jitter of a free-running dual-comb interferometry assisted by a Fabry-Pérot(F-P)cavity in the frequency domain.With high wavelength thermal stability provided by the F-P cavity,the absolute wavelength deviation in the operating bandwidth is compressed to<0.4 pm,corresponding to a subpicosecond sensitivity of pulse-to-pulse relative timing jitter.Also,Allan deviation of 10^(-10) is obtained under multiple coherent averaging,which lays the foundation for mode-resolved molecular spectroscopic applications.The spectral absorption features of hydrogen cyanide gas molecules at ambient temperature were measured and matched to the HITRAN database.Our scheme promises to provide new ideas on sensitive measurements of relative timing jitter.
基金Project(2013BAB02B05)supported by the National 12th Five-Year Science and Technology Supporting Plan of ChinaProject(2015CX005)supported by the Innovation Driven Plan of Central South University of ChinaProject(2016zzts094)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘The accurate identification of delay time in millisecond blasting plays an important role in the optimization of blasting design and reduction of vibration effect. Through a case study of a surge shaft blasting project, the capability of the EMD (empirical mode decomposition) method in identifying the delay time of short millisecond blasting with precise initiation was compared with the instantaneous energy method based on Hilbert-Huang transform (HHT). The recognition rate of the EMD method was more than 80%, while the instantaneous energy method was less than 25%. By analyzing the instantaneous energy of single-hole blasting signal, it was found that the instantaneous energy method was adaptable to millisecond blasting with delay time longer than half of the energy peak period. The EMD method was used to identify delay time of millisecond blasting in Zijinshan open-pit mine. According to the identification results, the blasting parameters were optimized for controlling the blast-induced vibration and reducing the large block ratio. The field data showed that the velocity peak of ground vibration was reduced by more than 30%under almost the same maximum charge per delay by the optimization of delay time and detonating detonators. Combining with slag-remaining blasting and burden optimization of the first row, the large block ratio was reduced to less than 3%. The research results proved that the identification method based on HHT was feasible to optimize the blasting design. The identification method is also of certain reference value for design optimization of other similar blasting projects.