BACKGROUND Wireless capsule endoscopy(WCE)has become an important noninvasive and portable tool for diagnosing digestive tract diseases and has been propelled by advancements in medical imaging technology.However,the ...BACKGROUND Wireless capsule endoscopy(WCE)has become an important noninvasive and portable tool for diagnosing digestive tract diseases and has been propelled by advancements in medical imaging technology.However,the complexity of the digestive tract structure,and the diversity of lesion types,results in different sites and types of lesions distinctly appearing in the images,posing a challenge for the accurate identification of digestive tract diseases.AIM To propose a deep learning-based lesion detection model to automatically identify and accurately label digestive tract lesions,thereby improving the diagnostic efficiency of doctors,and creating significant clinical application value.METHODS In this paper,we propose a neural network model,WCE_Detection,for the accurate detection and classification of 23 classes of digestive tract lesion images.First,since multicategory lesion images exhibit various shapes and scales,a multidetection head strategy is adopted in the object detection network to increase the model's robustness for multiscale lesion detection.Moreover,a bidirectional feature pyramid network(BiFPN)is introduced,which effectively fuses shallow semantic features by adding skip connections,significantly reducing the detection error rate.On the basis of the above,we utilize the Swin Transformer with its unique self-attention mechanism and hierarchical structure in conjunction with the BiFPN feature fusion technique to enhance the feature representation of multicategory lesion images.RESULTS The model constructed in this study achieved an mAP50 of 91.5%for detecting 23 lesions.More than eleven single-category lesions achieved an mAP50 of over 99.4%,and more than twenty lesions had an mAP50 value of over 80%.These results indicate that the model outperforms other state-of-the-art models in the end-to-end integrated detection of human digestive tract lesion images.CONCLUSION The deep learning-based object detection network detects multiple digestive tract lesions in WCE images with high accuracy,improving the diagnostic efficiency of doctors,and demonstrating significant clinical application value.展开更多
Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For...Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.展开更多
This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding type...This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.展开更多
For wireless sensor networks, a simple and accurate coordinate-free k-coverage hole detection scheme is proposed. First, an algorithm is presented to detect boundary cycles of 1-coverage holes. The algorithm consists ...For wireless sensor networks, a simple and accurate coordinate-free k-coverage hole detection scheme is proposed. First, an algorithm is presented to detect boundary cycles of 1-coverage holes. The algorithm consists of two components, named boundary edge detection and boundary cycle detection. Then, the 1-coverage hole detection algorithm is extended to k-coverage hole scenarios. A coverage degree reduction scheme is proposed to find an independent covering set of nodes in the covered region of the target field and to reduce the coverage degree by one through sleeping those nodes. Repeat the 1-coverage hole detection algorithm and the higher order of coverage holes can be found. By iterating the above steps for k-1 times, the boundary edges and boundary cycles of all k-coverage holes can be discovered. Finally, the proposed algorithm is compared with a location-based coverage hole detection algorithm. Simulation results indicate that the proposed algorithm can accurately detect over 99% coverage holes.展开更多
With the increasing deployment of wireless sensordevices and networks,security becomes a criticalchallenge for sensor networks.In this paper,a schemeusing data mining is proposed for routing anomalydetection in wirele...With the increasing deployment of wireless sensordevices and networks,security becomes a criticalchallenge for sensor networks.In this paper,a schemeusing data mining is proposed for routing anomalydetection in wireless sensor networks.The schemeuses the Apriori algorithm to extract traffic patternsfrom both routing table and network traffic packetsand subsequently the K-means cluster algorithmadaptively generates a detection model.Through thecombination of these two algorithms,routing attackscan be detected effectively and automatically.Themain advantage of the proposed approach is that it isable to detect new attacks that have not previouslybeen seen.Moreover,the proposed detection schemeis based on no priori knowledge and then can beapplied to a wide range of different sensor networksfor a variety of routing attacks.展开更多
The optical wireless communication (OWC) is afading channel because of the effect of atmosphericattenuation. We introduce a cumulant-based adaptive detection technique to providehigh performance for OWC. The received ...The optical wireless communication (OWC) is afading channel because of the effect of atmosphericattenuation. We introduce a cumulant-based adaptive detection technique to providehigh performance for OWC. The received signalof OWC over strong turbulence channels is assumedto be a mixture of K-distributed fading andGaussian distributed thermal noise. In order tomitigate the fading induced by turbulence, thedecision threshold-updating algorithm based onsecond and higher order cumulants is proposed,which is able to operate in an unknown turbulenceenvironment. The performance of the adaptiveprocessing scheme has been evaluated by meansof Monte Carlo simulations. It is shown that theproposed approach proves valuable for a limitednumber K of memory data.展开更多
As wireless sensor networks (WSN) are deployed in fire monitoring, object tracking applications, security emerges as a central requirement. A case that Sybil node illegitimately reports messages to the master node w...As wireless sensor networks (WSN) are deployed in fire monitoring, object tracking applications, security emerges as a central requirement. A case that Sybil node illegitimately reports messages to the master node with multiple non-existent identities (ID) will cause harmful effects on decision-making or resource allocation in these applications. In this paper, we present an efficient and lightweight solution for Sybil attack detection based on the time difference of arrival (TDOA) between the source node and beacon nodes. This solution can detect the existence of Sybil attacks, and locate the Sybil nodes. We demonstrate efficiency of the solution through experiments. The experiments show that this solution can detect all Sybil attack cases without missing.展开更多
Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protec...Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer suffi- cient and effective for those features. In this paper, we propose a distributed intrusion detection ap- proach based on timed automata. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then we con- struct the Finite State Machine (FSM) by the way of manually abstracting the correct behaviors of the node according to the routing protocol of Dynamic Source Routing (DSR). The monitor nodes can verify every node's behavior by the Finite State Ma- chine (FSM), and validly detect real-time attacks without signatures of intrusion or trained data.Compared with the architecture where each node is its own IDS agent, our approach is much more efficient while maintaining the same level of effectiveness. Finally, we evaluate the intrusion detection method through simulation experiments.展开更多
Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC...Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC) scheme based on multi-user detection for the multiple unicast transmission is proposed.Theoretic analysis and simulation results demonstrate that,compared with the conventional cooperation(CC) scheme and network-coded cooperation(NCC) scheme,CFNCC would obtain higher network throughput and consumes less time slots.Moreover,a further investigation is made for the symbol error probability(SEP) performance of CFNCC scheme,and SEPs of CFNCC scheme are compared with those of NCC scheme in various scenarios for different signal to noise ratio(SNR) values.展开更多
Wireless sensor network is an important technical support for ubiquitous communication. For the serious impacts of network failure caused by the unbalanced energy consumption of sensor nodes, hardware failure and atta...Wireless sensor network is an important technical support for ubiquitous communication. For the serious impacts of network failure caused by the unbalanced energy consumption of sensor nodes, hardware failure and attacker intrusion on data transmission, a low energy consumption distributed fault detection mechanism in wireless sensor network(LEFD) is proposed in this paper. Firstly, the time correlation information of nodes is used to detect fault nodes in LEFD, and then the spatial correlation information is adopted to detect the remaining fault nodes, so as to check the states of nodes comprehensively and improve the efficiency of data transmission. In addition, the nodes do not need to exchange information with their neighbor nodes in the initial detection process since LEFD adopts the data sensed by node itself to detect some types of faults, thus reducing the energy consumption of nodes effectively. Finally, LEFD also considers the nodes that may have transient faults. Performance analysis and simulation results show that the proposed detection mechanism can improve the transmission performance and reduce the energy consumption of network effectively.展开更多
To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the conf...To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the confidence level of sensor nodes.Then a node's reading data is compared with neighbor nodes' which are of good confidence level.Decision can be made whether this node is a failure or not.Simulation shows this method has good effect on fault detection accuracy and transient fault tolerance,and never transfers communication and computing overloading to sensor nodes.展开更多
Wireless Sensor Network (WSN) has been emerging in the last decade as a powerful tool for connecting physical and digital world. WSN has been used in many applications such habitat monitoring, building monitoring, sma...Wireless Sensor Network (WSN) has been emerging in the last decade as a powerful tool for connecting physical and digital world. WSN has been used in many applications such habitat monitoring, building monitoring, smart grid and pipeline monitoring. In addition, few researchers have been experimenting with WSN in many mission-critical applications such as military applications. This paper surveys the literature for experimenting work done in border surveillance and intrusion detection using the technology of WSN. The potential benefits of using WSN in border surveillance are huge;however, up to our knowledge very few attempts of solving many critical issues about this application could be found in the literature.展开更多
Wireless sensor networks(WSNs)are considered promising for applications such as military surveillance and healthcare.The security of these networks must be ensured in order to have reliable applications.Securing such ...Wireless sensor networks(WSNs)are considered promising for applications such as military surveillance and healthcare.The security of these networks must be ensured in order to have reliable applications.Securing such networks requires more attention,as they typically implement no dedicated security appliance.In addition,the sensors have limited computing resources and power and storage,which makes WSNs vulnerable to various attacks,especially denial of service(DoS).The main types of DoS attacks against WSNs are blackhole,grayhole,flooding,and scheduling.There are two primary techniques to build an intrusion detection system(IDS):signature-based and data-driven-based.This study uses the data-driven approach since the signature-based method fails to detect a zero-day attack.Several publications have proposed data-driven approaches to protect WSNs against such attacks.These approaches are based on either the traditional machine learning(ML)method or a deep learning model.The fundamental limitations of these methods include the use of raw features to build an intrusion detection model,which can result in low detection accuracy.This study implements entity embedding to transform the raw features to a more robust representation that can enable more precise detection and demonstrates how the proposed method can outperform state-of-the-art solutions in terms of recognition accuracy.展开更多
The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure...The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure the security of the network.Conventional intrusion detection mechanisms have issues such as higher misclassification rates,increased model complexity,insignificant feature extraction,increased training time,increased run time complexity,computation overhead,failure to identify new attacks,increased energy consumption,and a variety of other factors that limit the performance of the intrusion system model.In this research a security framework for WSN-IoT,through a deep learning technique is introduced using Modified Fuzzy-Adaptive DenseNet(MF_AdaDenseNet)and is benchmarked with datasets like NSL-KDD,UNSWNB15,CIDDS-001,Edge IIoT,Bot IoT.In this,the optimal feature selection using Capturing Dingo Optimization(CDO)is devised to acquire relevant features by removing redundant features.The proposed MF_AdaDenseNet intrusion detection model offers significant benefits by utilizing optimal feature selection with the CDO algorithm.This results in enhanced Detection Capacity with minimal computation complexity,as well as a reduction in False Alarm Rate(FAR)due to the consideration of classification error in the fitness estimation.As a result,the combined CDO-based feature selection and MF_AdaDenseNet intrusion detection mechanism outperform other state-of-the-art techniques,achieving maximal Detection Capacity,precision,recall,and F-Measure of 99.46%,99.54%,99.91%,and 99.68%,respectively,along with minimal FAR and Mean Absolute Error(MAE)of 0.9%and 0.11.展开更多
Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulne...Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulnerable to faults and malicious attacks. The sensor nodes affected or compromised can send erroneous data or misleading reports to base station. Hence identifying malicious and faulty nodes in an accurate and timely manner is important to provide reliable functioning of the networks. In this paper, we present a malicious and malfunctioning node detection scheme using dual-weighted trust evaluation in a hierarchical sensor network. Malicious nodes are effectively detected in the presence of natural faults and noise without sacrificing fault-free nodes. Simulation results show that the proposed scheme outperforms some existing schemes in terms of mis-detection rate and event detection accuracy, while maintaining comparable performance in malicious node detection rate and false alarm rate.展开更多
Cognitive Wireless Mesh Networks(CWMN) is a novel wireless network which combines the advantage of Cognitive Radio(CR) and wireless mesh networks.CWMN can realize seamless in-tegration of heterogeneous wireless networ...Cognitive Wireless Mesh Networks(CWMN) is a novel wireless network which combines the advantage of Cognitive Radio(CR) and wireless mesh networks.CWMN can realize seamless in-tegration of heterogeneous wireless networks and achieve better radio resource utilization.However,it is particularly vulnerable due to its features of open medium,dynamic spectrum,dynamic topology,and multi-top routing,etc..Being a dynamic positive security strategy,intrusion detection can provide powerful safeguard to CWMN.In this paper,we introduce trust mechanism into CWMN with intrusion detection and present a trust establishment model based on intrusion detection.Node trust degree and the trust degree of data transmission channels between nodes are defined and an algorithm of calcu-lating trust degree is given based on distributed detection of attack to networks.A channel assignment and routing scheme is proposed,in which selects the trusted nodes and allocates data channel with high trust degree for the transmission between neighbor nodes to establish a trusted route.Simulation re-sults indicate that the scheme can vary channel allocation and routing dynamically according to network security state so as to avoid suspect nodes and unsafe channels,and improve the packet safe delivery fraction effectively.展开更多
In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Ga...In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively.展开更多
The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important...The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important to detect events in the presence of wrong sensor readings and misleading reports. In this paper, we present a neighbor-based malicious node detection scheme for wireless sensor networks. Malicious nodes are modeled as faulty nodes behaving intelligently to lead to an incorrect decision or energy depletion without being easily detected. Each sensor node makes a decision on the fault status of itself and its neighboring nodes based on the sensor readings. Most erroneous readings due to transient faults are corrected by filtering, while nodes with permanent faults are removed using confidence-level evaluation, to improve malicious node detection rate and event detection accuracy. Each node maintains confidence levels of itself and its neighbors, indicating the track records in reporting past events correctly. Computer simulation shows that most of the malicious nodes reporting against their own readings are correctly detected unless they behave similar to the normal nodes. As a result, high event detection accuracy is also maintained while achieving low false alarm rate.展开更多
Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their spe...Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete Intrusion Detection Architecture (IDA). The main contribution of this architecture is its hierarchical structure;i.e. it is designed and applicable, in one, two or three levels, consistent to the application domain and its required security level. Focus of this paper is on the clustering WSNs, designing and deploying Sensor-based Intrusion Detection System (SIDS) on sensor nodes, Cluster-based Intrusion Detection System (CIDS) on cluster-heads and Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the central server. Suppositions of the WSN and Intrusion Detection Architecture (IDA) are: static and heterogeneous network, hierarchical, distributed and clustering structure along with clusters' overlapping. Finally, this paper has been designed a questionnaire to verify the proposed idea;then it analyzed and evaluated the acquired results from the questionnaires.展开更多
Intrusion is any unwanted activity that can disrupt the normal functions of wired or wireless networks. Wireless mesh networking technology has been pivotal in providing an affordable means to deploy a network and all...Intrusion is any unwanted activity that can disrupt the normal functions of wired or wireless networks. Wireless mesh networking technology has been pivotal in providing an affordable means to deploy a network and allow omnipresent access to users on the Internet. A multitude of emerging public services rely on the widespread, high-speed, and inexpensive connectivity provided by such networks. The absence of a centralized network infrastructure and open shared medium makes WMNs particularly susceptible to malevolent attacks, especially in multihop networks. Hence, it is becoming increasingly important to ensure privacy, security, and resilience when designing such networks. An effective method to detect possible internal and external attack vectors is to use an intrusion detection system. Although many Intrusion Detection Systems (IDSs) were proposed for Wireless Mesh Networks (WMNs), they can only detect intrusions in a particular layer. Because WMNs are vulnerable to multilayer security attacks, a cross-layer IDS are required to detect and respond to such attacks. In this study, we analyzed cross-layer IDS options in WMN environments. The main objective was to understand how such schemes detect security attacks at several OSI layers. The suggested IDS is verified in many scenarios, and the experimental results show its efficiency.展开更多
基金Supported by The Science and Technology Development Center of The Ministry of Education,No.2022BC004。
文摘BACKGROUND Wireless capsule endoscopy(WCE)has become an important noninvasive and portable tool for diagnosing digestive tract diseases and has been propelled by advancements in medical imaging technology.However,the complexity of the digestive tract structure,and the diversity of lesion types,results in different sites and types of lesions distinctly appearing in the images,posing a challenge for the accurate identification of digestive tract diseases.AIM To propose a deep learning-based lesion detection model to automatically identify and accurately label digestive tract lesions,thereby improving the diagnostic efficiency of doctors,and creating significant clinical application value.METHODS In this paper,we propose a neural network model,WCE_Detection,for the accurate detection and classification of 23 classes of digestive tract lesion images.First,since multicategory lesion images exhibit various shapes and scales,a multidetection head strategy is adopted in the object detection network to increase the model's robustness for multiscale lesion detection.Moreover,a bidirectional feature pyramid network(BiFPN)is introduced,which effectively fuses shallow semantic features by adding skip connections,significantly reducing the detection error rate.On the basis of the above,we utilize the Swin Transformer with its unique self-attention mechanism and hierarchical structure in conjunction with the BiFPN feature fusion technique to enhance the feature representation of multicategory lesion images.RESULTS The model constructed in this study achieved an mAP50 of 91.5%for detecting 23 lesions.More than eleven single-category lesions achieved an mAP50 of over 99.4%,and more than twenty lesions had an mAP50 value of over 80%.These results indicate that the model outperforms other state-of-the-art models in the end-to-end integrated detection of human digestive tract lesion images.CONCLUSION The deep learning-based object detection network detects multiple digestive tract lesions in WCE images with high accuracy,improving the diagnostic efficiency of doctors,and demonstrating significant clinical application value.
基金supported by the Natural Science Foundation under Grant No.61962009Major Scientific and Technological Special Project of Guizhou Province under Grant No.20183001Foundation of Guizhou Provincial Key Laboratory of Public Big Data under Grant No.2018BDKFJJ003,2018BDKFJJ005 and 2019BDKFJJ009.
文摘Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.
基金supported in part by the National Natural Science Foundation of China(Nos.62071441 and 61701464)in part by the Fundamental Research Funds for the Central Universities(No.202151006).
文摘This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.
基金The National Natural Science Foundation of China(No.61601122,61471164,61741102)
文摘For wireless sensor networks, a simple and accurate coordinate-free k-coverage hole detection scheme is proposed. First, an algorithm is presented to detect boundary cycles of 1-coverage holes. The algorithm consists of two components, named boundary edge detection and boundary cycle detection. Then, the 1-coverage hole detection algorithm is extended to k-coverage hole scenarios. A coverage degree reduction scheme is proposed to find an independent covering set of nodes in the covered region of the target field and to reduce the coverage degree by one through sleeping those nodes. Repeat the 1-coverage hole detection algorithm and the higher order of coverage holes can be found. By iterating the above steps for k-1 times, the boundary edges and boundary cycles of all k-coverage holes can be discovered. Finally, the proposed algorithm is compared with a location-based coverage hole detection algorithm. Simulation results indicate that the proposed algorithm can accurately detect over 99% coverage holes.
基金the supports of the National Natural Science Foundation of China (60403027) the projects of science and research plan of Hubei provincial department of education (2003A011)the Natural Science Foundation Of Hubei Province of China (2005ABA243).
文摘With the increasing deployment of wireless sensordevices and networks,security becomes a criticalchallenge for sensor networks.In this paper,a schemeusing data mining is proposed for routing anomalydetection in wireless sensor networks.The schemeuses the Apriori algorithm to extract traffic patternsfrom both routing table and network traffic packetsand subsequently the K-means cluster algorithmadaptively generates a detection model.Through thecombination of these two algorithms,routing attackscan be detected effectively and automatically.Themain advantage of the proposed approach is that it isable to detect new attacks that have not previouslybeen seen.Moreover,the proposed detection schemeis based on no priori knowledge and then can beapplied to a wide range of different sensor networksfor a variety of routing attacks.
文摘The optical wireless communication (OWC) is afading channel because of the effect of atmosphericattenuation. We introduce a cumulant-based adaptive detection technique to providehigh performance for OWC. The received signalof OWC over strong turbulence channels is assumedto be a mixture of K-distributed fading andGaussian distributed thermal noise. In order tomitigate the fading induced by turbulence, thedecision threshold-updating algorithm based onsecond and higher order cumulants is proposed,which is able to operate in an unknown turbulenceenvironment. The performance of the adaptiveprocessing scheme has been evaluated by meansof Monte Carlo simulations. It is shown that theproposed approach proves valuable for a limitednumber K of memory data.
基金the Specialized Research Foundation for the Doctoral Program of Higher Education(Grant No.20050248043)
文摘As wireless sensor networks (WSN) are deployed in fire monitoring, object tracking applications, security emerges as a central requirement. A case that Sybil node illegitimately reports messages to the master node with multiple non-existent identities (ID) will cause harmful effects on decision-making or resource allocation in these applications. In this paper, we present an efficient and lightweight solution for Sybil attack detection based on the time difference of arrival (TDOA) between the source node and beacon nodes. This solution can detect the existence of Sybil attacks, and locate the Sybil nodes. We demonstrate efficiency of the solution through experiments. The experiments show that this solution can detect all Sybil attack cases without missing.
基金Acknowledgements Project supported by the National Natural Science Foundation of China (Grant No.60932003), the National High Technology Development 863 Program of China (Grant No.2007AA01Z452, No. 2009AA01 Z118 ), Project supported by Shanghai Municipal Natural Science Foundation (Grant No.09ZRI414900), National Undergraduate Innovative Test Program (091024812).
文摘Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer suffi- cient and effective for those features. In this paper, we propose a distributed intrusion detection ap- proach based on timed automata. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then we con- struct the Finite State Machine (FSM) by the way of manually abstracting the correct behaviors of the node according to the routing protocol of Dynamic Source Routing (DSR). The monitor nodes can verify every node's behavior by the Finite State Ma- chine (FSM), and validly detect real-time attacks without signatures of intrusion or trained data.Compared with the architecture where each node is its own IDS agent, our approach is much more efficient while maintaining the same level of effectiveness. Finally, we evaluate the intrusion detection method through simulation experiments.
基金supported by the National Natural Science Foundation of China(6104000561001126+5 种基金61271262)the China Postdoctoral Science Foundation Funded Project(201104916382012T50789)the Natural Science Foundation of Shannxi Province of China(2011JQ8036)the Special Fund for Basic Scientific Research of Central Colleges (CHD2012ZD005)the Research Fund of Zhejiang University of Technology(20100244)
文摘Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC) scheme based on multi-user detection for the multiple unicast transmission is proposed.Theoretic analysis and simulation results demonstrate that,compared with the conventional cooperation(CC) scheme and network-coded cooperation(NCC) scheme,CFNCC would obtain higher network throughput and consumes less time slots.Moreover,a further investigation is made for the symbol error probability(SEP) performance of CFNCC scheme,and SEPs of CFNCC scheme are compared with those of NCC scheme in various scenarios for different signal to noise ratio(SNR) values.
基金supported by the National Natural Science Foundation of China No. 61571162, 61771186Ministry of Education-China Mobile Research Foundation No. MCM20170106+1 种基金Heilongjiang Province Natural Science Foundation No. F2016019University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province No. UNPYSCT-2017125
文摘Wireless sensor network is an important technical support for ubiquitous communication. For the serious impacts of network failure caused by the unbalanced energy consumption of sensor nodes, hardware failure and attacker intrusion on data transmission, a low energy consumption distributed fault detection mechanism in wireless sensor network(LEFD) is proposed in this paper. Firstly, the time correlation information of nodes is used to detect fault nodes in LEFD, and then the spatial correlation information is adopted to detect the remaining fault nodes, so as to check the states of nodes comprehensively and improve the efficiency of data transmission. In addition, the nodes do not need to exchange information with their neighbor nodes in the initial detection process since LEFD adopts the data sensed by node itself to detect some types of faults, thus reducing the energy consumption of nodes effectively. Finally, LEFD also considers the nodes that may have transient faults. Performance analysis and simulation results show that the proposed detection mechanism can improve the transmission performance and reduce the energy consumption of network effectively.
基金supported by the National Basic Research Program of China(2007CB310703)the High Technical Research and Development Program of China(2008AA01Z201)+1 种基金the National Natural Science Foundlation of China(60821001,60802035,60973108)Chinese Universities Science Fund(BUPT2009RC0504)
文摘To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the confidence level of sensor nodes.Then a node's reading data is compared with neighbor nodes' which are of good confidence level.Decision can be made whether this node is a failure or not.Simulation shows this method has good effect on fault detection accuracy and transient fault tolerance,and never transfers communication and computing overloading to sensor nodes.
文摘Wireless Sensor Network (WSN) has been emerging in the last decade as a powerful tool for connecting physical and digital world. WSN has been used in many applications such habitat monitoring, building monitoring, smart grid and pipeline monitoring. In addition, few researchers have been experimenting with WSN in many mission-critical applications such as military applications. This paper surveys the literature for experimenting work done in border surveillance and intrusion detection using the technology of WSN. The potential benefits of using WSN in border surveillance are huge;however, up to our knowledge very few attempts of solving many critical issues about this application could be found in the literature.
基金This publication was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University。
文摘Wireless sensor networks(WSNs)are considered promising for applications such as military surveillance and healthcare.The security of these networks must be ensured in order to have reliable applications.Securing such networks requires more attention,as they typically implement no dedicated security appliance.In addition,the sensors have limited computing resources and power and storage,which makes WSNs vulnerable to various attacks,especially denial of service(DoS).The main types of DoS attacks against WSNs are blackhole,grayhole,flooding,and scheduling.There are two primary techniques to build an intrusion detection system(IDS):signature-based and data-driven-based.This study uses the data-driven approach since the signature-based method fails to detect a zero-day attack.Several publications have proposed data-driven approaches to protect WSNs against such attacks.These approaches are based on either the traditional machine learning(ML)method or a deep learning model.The fundamental limitations of these methods include the use of raw features to build an intrusion detection model,which can result in low detection accuracy.This study implements entity embedding to transform the raw features to a more robust representation that can enable more precise detection and demonstrates how the proposed method can outperform state-of-the-art solutions in terms of recognition accuracy.
基金Authors extend their appreciation to King Saud University for funding the publication of this research through the Researchers Supporting Project number(RSPD2024R809),King Saud University,Riyadh,Saudi Arabia.
文摘The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure the security of the network.Conventional intrusion detection mechanisms have issues such as higher misclassification rates,increased model complexity,insignificant feature extraction,increased training time,increased run time complexity,computation overhead,failure to identify new attacks,increased energy consumption,and a variety of other factors that limit the performance of the intrusion system model.In this research a security framework for WSN-IoT,through a deep learning technique is introduced using Modified Fuzzy-Adaptive DenseNet(MF_AdaDenseNet)and is benchmarked with datasets like NSL-KDD,UNSWNB15,CIDDS-001,Edge IIoT,Bot IoT.In this,the optimal feature selection using Capturing Dingo Optimization(CDO)is devised to acquire relevant features by removing redundant features.The proposed MF_AdaDenseNet intrusion detection model offers significant benefits by utilizing optimal feature selection with the CDO algorithm.This results in enhanced Detection Capacity with minimal computation complexity,as well as a reduction in False Alarm Rate(FAR)due to the consideration of classification error in the fitness estimation.As a result,the combined CDO-based feature selection and MF_AdaDenseNet intrusion detection mechanism outperform other state-of-the-art techniques,achieving maximal Detection Capacity,precision,recall,and F-Measure of 99.46%,99.54%,99.91%,and 99.68%,respectively,along with minimal FAR and Mean Absolute Error(MAE)of 0.9%and 0.11.
文摘Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulnerable to faults and malicious attacks. The sensor nodes affected or compromised can send erroneous data or misleading reports to base station. Hence identifying malicious and faulty nodes in an accurate and timely manner is important to provide reliable functioning of the networks. In this paper, we present a malicious and malfunctioning node detection scheme using dual-weighted trust evaluation in a hierarchical sensor network. Malicious nodes are effectively detected in the presence of natural faults and noise without sacrificing fault-free nodes. Simulation results show that the proposed scheme outperforms some existing schemes in terms of mis-detection rate and event detection accuracy, while maintaining comparable performance in malicious node detection rate and false alarm rate.
基金Supported by the National High Technology Research and Development Program (No. 2009AA011504)
文摘Cognitive Wireless Mesh Networks(CWMN) is a novel wireless network which combines the advantage of Cognitive Radio(CR) and wireless mesh networks.CWMN can realize seamless in-tegration of heterogeneous wireless networks and achieve better radio resource utilization.However,it is particularly vulnerable due to its features of open medium,dynamic spectrum,dynamic topology,and multi-top routing,etc..Being a dynamic positive security strategy,intrusion detection can provide powerful safeguard to CWMN.In this paper,we introduce trust mechanism into CWMN with intrusion detection and present a trust establishment model based on intrusion detection.Node trust degree and the trust degree of data transmission channels between nodes are defined and an algorithm of calcu-lating trust degree is given based on distributed detection of attack to networks.A channel assignment and routing scheme is proposed,in which selects the trusted nodes and allocates data channel with high trust degree for the transmission between neighbor nodes to establish a trusted route.Simulation re-sults indicate that the scheme can vary channel allocation and routing dynamically according to network security state so as to avoid suspect nodes and unsafe channels,and improve the packet safe delivery fraction effectively.
文摘In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively.
文摘The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important to detect events in the presence of wrong sensor readings and misleading reports. In this paper, we present a neighbor-based malicious node detection scheme for wireless sensor networks. Malicious nodes are modeled as faulty nodes behaving intelligently to lead to an incorrect decision or energy depletion without being easily detected. Each sensor node makes a decision on the fault status of itself and its neighboring nodes based on the sensor readings. Most erroneous readings due to transient faults are corrected by filtering, while nodes with permanent faults are removed using confidence-level evaluation, to improve malicious node detection rate and event detection accuracy. Each node maintains confidence levels of itself and its neighbors, indicating the track records in reporting past events correctly. Computer simulation shows that most of the malicious nodes reporting against their own readings are correctly detected unless they behave similar to the normal nodes. As a result, high event detection accuracy is also maintained while achieving low false alarm rate.
文摘Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete Intrusion Detection Architecture (IDA). The main contribution of this architecture is its hierarchical structure;i.e. it is designed and applicable, in one, two or three levels, consistent to the application domain and its required security level. Focus of this paper is on the clustering WSNs, designing and deploying Sensor-based Intrusion Detection System (SIDS) on sensor nodes, Cluster-based Intrusion Detection System (CIDS) on cluster-heads and Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the central server. Suppositions of the WSN and Intrusion Detection Architecture (IDA) are: static and heterogeneous network, hierarchical, distributed and clustering structure along with clusters' overlapping. Finally, this paper has been designed a questionnaire to verify the proposed idea;then it analyzed and evaluated the acquired results from the questionnaires.
文摘Intrusion is any unwanted activity that can disrupt the normal functions of wired or wireless networks. Wireless mesh networking technology has been pivotal in providing an affordable means to deploy a network and allow omnipresent access to users on the Internet. A multitude of emerging public services rely on the widespread, high-speed, and inexpensive connectivity provided by such networks. The absence of a centralized network infrastructure and open shared medium makes WMNs particularly susceptible to malevolent attacks, especially in multihop networks. Hence, it is becoming increasingly important to ensure privacy, security, and resilience when designing such networks. An effective method to detect possible internal and external attack vectors is to use an intrusion detection system. Although many Intrusion Detection Systems (IDSs) were proposed for Wireless Mesh Networks (WMNs), they can only detect intrusions in a particular layer. Because WMNs are vulnerable to multilayer security attacks, a cross-layer IDS are required to detect and respond to such attacks. In this study, we analyzed cross-layer IDS options in WMN environments. The main objective was to understand how such schemes detect security attacks at several OSI layers. The suggested IDS is verified in many scenarios, and the experimental results show its efficiency.