期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
深度神经网络压缩与加速综述 被引量:61
1
作者 纪荣嵘 林绍辉 +2 位作者 晁飞 吴永坚 黄飞跃 《计算机研究与发展》 EI CSCD 北大核心 2018年第9期1871-1888,共18页
深度神经网络在人工智能的应用中,包括计算机视觉、语音识别、自然语言处理方面,取得了巨大成功.但这些深度神经网络需要巨大的计算开销和内存存储,阻碍了在资源有限环境下的使用,如移动或嵌入式设备端.为解决此问题,在近年来产生大量... 深度神经网络在人工智能的应用中,包括计算机视觉、语音识别、自然语言处理方面,取得了巨大成功.但这些深度神经网络需要巨大的计算开销和内存存储,阻碍了在资源有限环境下的使用,如移动或嵌入式设备端.为解决此问题,在近年来产生大量关于深度神经网络压缩与加速的研究工作.对现有代表性的深度神经网络压缩与加速方法进行回顾与总结,这些方法包括了参数剪枝、参数共享、低秩分解、紧性滤波设计及知识蒸馏.具体地,将概述一些经典深度神经网络模型,详细描述深度神经网络压缩与加速方法,并强调这些方法的特性及优缺点.此外,总结了深度神经网络压缩与加速的评测方法及广泛使用的数据集,同时讨论分析一些代表性方法的性能表现.最后,根据不同任务的需要,讨论了如何选择不同的压缩与加速方法,并对压缩与加速方法未来发展趋势进行展望. 展开更多
关键词 深度神经网络压缩 深度神经网络加速 参数剪枝 参数共享 低秩分解 知识蒸馏
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部