期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
一种层次结构化P2P网络中的负载均衡方法 被引量:24
1
作者 张宇翔 张宏科 《计算机学报》 EI CSCD 北大核心 2010年第9期1580-1590,共11页
相对于扁平结构化P2P网络,层次结构化P2P网络可利用稳定、高性能的超级节点提高P2P网络在动态环境下的性能.然而,超级节点的负载不均是层次结构化P2P网络面临的基本问题之一.对此,作者提出一种超级节点的负载均衡方法,通过分离超级节点... 相对于扁平结构化P2P网络,层次结构化P2P网络可利用稳定、高性能的超级节点提高P2P网络在动态环境下的性能.然而,超级节点的负载不均是层次结构化P2P网络面临的基本问题之一.对此,作者提出一种超级节点的负载均衡方法,通过分离超级节点负责的关键字空间和负责的叶子节点空间来为均衡负载提供条件,通过采用"力矩平衡原理"来实现兼顾均衡超级节点负责的叶子节点空间和查询请求负载.实验结果表明:在节点承载容量服从Zipf分布和查找请求服从正态分布或Pareto分布的环境下,负载均衡方法可使超级节点的负载达到较好的均衡,实现了用较少的超级节点承担较大的负载总量. 展开更多
关键词 分布式散列表 CHORD 层次结构化P2P网络 负载均衡
在线阅读 下载PDF
浅谈面向服务架构(SOA)的核心理念 被引量:15
2
作者 张春霞 李旭东 徐涛 《计算机系统应用》 2010年第6期251-256,共6页
首先回顾了计算机技术发展的路线及面向服务的由来,详细探讨了面向服务架构(SOA)的核心理念和判定标准,及其核心元素和软件开发过程,并就Web服务和SOA进行了比较来进一步认识SOA的内涵,并给出可支持构建基于SOA应用系统的具体技术,最后... 首先回顾了计算机技术发展的路线及面向服务的由来,详细探讨了面向服务架构(SOA)的核心理念和判定标准,及其核心元素和软件开发过程,并就Web服务和SOA进行了比较来进一步认识SOA的内涵,并给出可支持构建基于SOA应用系统的具体技术,最后探讨了SOA进一步研究方向。 展开更多
关键词 复用 服务 面向服务架构 企业服务总线(EsB) Web服务 服务组件架构(SCA) 服务数据对象(SDO)
在线阅读 下载PDF
改进模糊C均值的客机空调系统退化评估算法 被引量:1
3
作者 丁建立 方正汉 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第1期142-149,共8页
针对使用快速存储记录器(Quick access recorder,QAR)数据进行大型客机空调系统健康评估与异常检测时面临的数据不平衡与先验知识不足的问题,本文提出一种基于改进模糊C均值(Fuzzy C‑means,FCM)的大型客机空调系统退化评估算法。该算法... 针对使用快速存储记录器(Quick access recorder,QAR)数据进行大型客机空调系统健康评估与异常检测时面临的数据不平衡与先验知识不足的问题,本文提出一种基于改进模糊C均值(Fuzzy C‑means,FCM)的大型客机空调系统退化评估算法。该算法计算故障状态与正常状态的距离,并基于大型客机空调系统的物理特性优化了FCM算法的距离函数,引入了左右空调组件的状态差作为评估标准。本算法有效地解决了现行方法存在的过拟合问题,并且对于部件的前期退化有更高的敏感性,能够有效的反映性能退化的中间过程。为航空公司安排航班计划与维修计划,降低运行成本提供了有力的技术支持。 展开更多
关键词 快速存储记录器数据 空调系统 退化评估 改进模糊C均值算法 故障状态
在线阅读 下载PDF
A Novel Deep Neural Network Compression Model for Airport Object Detection 被引量:3
4
作者 LYU Zonglei PAN Fuxi XU Xianhong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期562-573,共12页
A novel deep neural network compression model for airport object detection has been presented.This novel model aims at disadvantages of deep neural network,i.e.the complexity of the model and the great cost of calcula... A novel deep neural network compression model for airport object detection has been presented.This novel model aims at disadvantages of deep neural network,i.e.the complexity of the model and the great cost of calculation.According to the requirement of airport object detection,the model obtains temporal and spatial semantic rules from the uncompressed model.These spatial semantic rules are added to the model after parameter compression to assist the detection.The rules can improve the accuracy of the detection model in order to make up for the loss caused by parameter compression.The experiments show that the effect of the novel compression detection model is no worse than that of the uncompressed original model.Even some of the original model false detection can be eliminated through the prior knowledge. 展开更多
关键词 compression model semantic rules PRUNING prior probability lightweight detection
在线阅读 下载PDF
SA-FRCNN:An Improved Object Detection Method for Airport Apron Scenes 被引量:2
5
作者 LYU Zonglei CHEN Liyun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期571-586,共16页
The airport apron scene contains rich contextual information about the spatial position relationship.Traditional object detectors only considered visual appearance and ignored the contextual information.In addition,th... The airport apron scene contains rich contextual information about the spatial position relationship.Traditional object detectors only considered visual appearance and ignored the contextual information.In addition,the detection accuracy of some categories in the apron dataset was low.Therefore,an improved object detection method using spatial-aware features in apron scenes called SA-FRCNN is presented.The method uses graph convolutional networks to capture the relative spatial relationship between objects in the apron scene,incorporating this spatial context into feature learning.Moreover,an attention mechanism is introduced into the feature extraction process,with the goal to focus on the spatial position and key features,and distance-IoU loss is used to achieve a more accurate regression.The experimental results show that the mean average precision of the apron object detection based on SAFRCNN can reach 95.75%,and the detection effect of some hard-to-detect categories has been significantly improved.The proposed method effectively improves the detection accuracy on the apron dataset,which has a leading advantage over other methods. 展开更多
关键词 airport apron scene object detection graph convolutional network spatial context attention mechanism
在线阅读 下载PDF
Homogeneity Analysis of Multiairport System Based on Airport Attributed Network Representation Learning 被引量:2
6
作者 LIU Caihua CAI Rui +1 位作者 FENG Xia XU Tao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期616-624,共9页
The homogeneity analysis of multi-airport system can provide important decision-making support for the route layout and cooperative operation.Existing research seldom analyzes the homogeneity of multi-airport system f... The homogeneity analysis of multi-airport system can provide important decision-making support for the route layout and cooperative operation.Existing research seldom analyzes the homogeneity of multi-airport system from the perspective of route network analysis,and the attribute information of airport nodes in the airport route network is not appropriately integrated into the airport network.In order to solve this problem,a multi-airport system homogeneity analysis method based on airport attribute network representation learning is proposed.Firstly,the route network of a multi-airport system with attribute information is constructed.If there are flights between airports,an edge is added between airports,and regional attribute information is added for each airport node.Secondly,the airport attributes and the airport network vector are represented respectively.The airport attributes and the airport network vector are embedded into the unified airport representation vector space by the network representation learning method,and then the airport vector integrating the airport attributes and the airport network characteristics is obtained.By calculating the similarity of the airport vectors,it is convenient to calculate the degree of homogeneity between airports and the homogeneity of the multi-airport system.The experimental results on the Beijing-Tianjin-Hebei multi-airport system show that,compared with other existing algorithms,the homogeneity analysis method based on attributed network representation learning can get more consistent results with the current situation of Beijing-Tianjin-Hebei multi-airport system. 展开更多
关键词 air transportation multi-airport system homogeneity analysis network representation learning airport attribute network
在线阅读 下载PDF
Scheduling Check-in Staff with Hierarchical Skills and Weekly Rotation Shifts
7
作者 LU Min XU Tao FENG Xia 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期638-645,共8页
The paper aims to schedule check-in staff with hierarchical skills as well as day and night shifts in weekly rotation.That shift ensures staff work at day in a week and at night for the next week.The existing approach... The paper aims to schedule check-in staff with hierarchical skills as well as day and night shifts in weekly rotation.That shift ensures staff work at day in a week and at night for the next week.The existing approaches do not deal with the shift constraint.To address this,the proposed algorithm firstly guarantees the day and night shifts by designing a data copy tactic,and then introduces two algorithms to generate staff assignment in a polynomial time.The first algorithm is to yield an initial solution efficiently,whereas the second incrementally updates that solution to cut off working hours.The key idea of the two algorithms is to utilize a block Gibbs sampling with replacement to simultaneously exchange multiple staff assignment.Experimental results indicate that the proposed algorithm reduces at least 15.6 total working hours than the baselines. 展开更多
关键词 check-in staff scheduling hierarchical skills weekly rotation shifts block Gibbs sampling
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部