钻井过程中掉块的监测与识别对于及时发现和减缓井壁不稳定和卡钻等井下复杂至关重要。当前,掉块监测主要依赖人工监测,但该方法易受主观影响且耗时较长,存在滞后性。为此,提出一种基于3D视觉的钻井掉块自动识别与特征判断方法。该方法...钻井过程中掉块的监测与识别对于及时发现和减缓井壁不稳定和卡钻等井下复杂至关重要。当前,掉块监测主要依赖人工监测,但该方法易受主观影响且耗时较长,存在滞后性。为此,提出一种基于3D视觉的钻井掉块自动识别与特征判断方法。该方法利用3D成像技术来获取振动筛上返出掉块的三维深度信息,以构建掉块图像样本库,并以You Only Look Once v8s(YOLOv8s)为基础目标检测模型,结合引入的卷积块注意力模块(CBAM),建立了CBAM-YOLOv8s掉块目标检测模型。通过将3D相机实时获取的三维深度信息集成到模型中,不仅实现了对掉块的实时监测和准确识别,还能够在识别的基础上判断其形状特征,从而实现井壁失稳性分析和井眼状况的实时评估。实验结果表明:CBAM模块的引入增强了模型对掉块关键特征的关注;集成实时获取三维深度信息的CBAM-YOLOv8s模型对掉块识别精确率和召回率分别达到96.01%和93.40%;扩展模型在掉块形状特征预测中的误差均小于10%。结论认为,基于3D视觉技术的实时掉块可视化监测方法具有良好的可行性和有效性,能够准确识别出掉块及其形状特征,这一方法将为井壁稳定性早期预警和井下复杂提供支持。展开更多
文摘四川盆地超深层油气的开发是钻探领域的重中之重。为满足超深井整个井身结构设计及钻进过程井筒稳定性的需要,针对四川盆地大尺寸井眼,以增强钻头稳定性、提高钻头破岩效率为目的,研制了Ф812.8 mm(32 in)PDC钻头,并在SDCK1井进行了现场应用。该钻头采用10刀翼设计,冠部采用稳定性较好的长锥形轮廓,并采用大小水眼混布方式提高切屑齿的冷却及井筒清洁效果。建立了Ф812.8 mm PDC钻头井底流场仿真模型,通过水力优化进行喷嘴倾角设计。研究及现场应用结果表明:钻井液喷射倾角为16°时在井底所形成的压力梯度和矢量图所表现出的效果较好;与牙轮钻头相比,研制的PDC钻头单趟钻进尺提高150%,单趟纯钻时间延长25.8%,平均机械钻速提高89%,钻头稳定性好,破岩效率高。研究结果可为四川盆地大尺寸井眼钻头设计提供指导。
文摘钻井过程中掉块的监测与识别对于及时发现和减缓井壁不稳定和卡钻等井下复杂至关重要。当前,掉块监测主要依赖人工监测,但该方法易受主观影响且耗时较长,存在滞后性。为此,提出一种基于3D视觉的钻井掉块自动识别与特征判断方法。该方法利用3D成像技术来获取振动筛上返出掉块的三维深度信息,以构建掉块图像样本库,并以You Only Look Once v8s(YOLOv8s)为基础目标检测模型,结合引入的卷积块注意力模块(CBAM),建立了CBAM-YOLOv8s掉块目标检测模型。通过将3D相机实时获取的三维深度信息集成到模型中,不仅实现了对掉块的实时监测和准确识别,还能够在识别的基础上判断其形状特征,从而实现井壁失稳性分析和井眼状况的实时评估。实验结果表明:CBAM模块的引入增强了模型对掉块关键特征的关注;集成实时获取三维深度信息的CBAM-YOLOv8s模型对掉块识别精确率和召回率分别达到96.01%和93.40%;扩展模型在掉块形状特征预测中的误差均小于10%。结论认为,基于3D视觉技术的实时掉块可视化监测方法具有良好的可行性和有效性,能够准确识别出掉块及其形状特征,这一方法将为井壁稳定性早期预警和井下复杂提供支持。