对城市轨道交通时刻表管理系统中的计划运行时刻表的自动生成、时刻表编辑、实际运行时刻表的自动生成、列车运行图的自动铺画等功能进行了分析。根据实际运营的需求,采用SQL Server 2005数据库和VC++6.0实现其具体功能的仿真。生成的...对城市轨道交通时刻表管理系统中的计划运行时刻表的自动生成、时刻表编辑、实际运行时刻表的自动生成、列车运行图的自动铺画等功能进行了分析。根据实际运营的需求,采用SQL Server 2005数据库和VC++6.0实现其具体功能的仿真。生成的时刻表准确度较高,可为我国列车自动监督时刻表管理系统的国产化提供一定的借鉴。展开更多
Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extrac...Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods.展开更多
The purpose of this study is to analyze the galloping characteristics of the catenary positive feeder in fluctuating wind areas considering dynamic-wind angle of attack and aerodynamic damping.Firstly,the flow field m...The purpose of this study is to analyze the galloping characteristics of the catenary positive feeder in fluctuating wind areas considering dynamic-wind angle of attack and aerodynamic damping.Firstly,the flow field model of the catenary positive feeder was established,the fluctuating wind field was simulated by Davenport wind power spectrum and linear filtering method,and the wind speed at inlet in calculation domain was controlled by editing the profile file to simulate and calculate the aerodynamic characteristics of the positive feeder in the fluctuating wind area.Then,taking the positive feeder as the research object,the mathematical model of actual structure and the corresponding finite element model were established.By applying the wind load to the finite element model,the influence of aerodynamic damping caused by the self-movement of the positive feeder on the galloping response was analyzed,and the frequency domain characteristics of galloping displacement of the positive feeder considering aerodynamic damping were studied.Finally,the calculation method of aerodynamic damping by the Guidelines for Electrical Transmission Line Structural Loading(ASCE No.74)was used for the galloping response of the positive feeder and compared with the proposed method.The results show that when considering aerodynamic damping,the galloping amplitude of the positive feeder decreases significantly,and the first-order resonance effect on the vertical displacement and horizontal displacement decreases significantly.The galloping trajectories calculated by the two methods are consistent.Therefore,this study is of great significance to further clarify the ice-free galloping mechanism of the catenary positive feeder in violent wind areas.展开更多
文摘对城市轨道交通时刻表管理系统中的计划运行时刻表的自动生成、时刻表编辑、实际运行时刻表的自动生成、列车运行图的自动铺画等功能进行了分析。根据实际运营的需求,采用SQL Server 2005数据库和VC++6.0实现其具体功能的仿真。生成的时刻表准确度较高,可为我国列车自动监督时刻表管理系统的国产化提供一定的借鉴。
基金the financial support from Natural Science Foundation of Gansu Province(Nos.22JR5RA217,22JR5RA216)Lanzhou Science and Technology Program(No.2022-2-111)+1 种基金Lanzhou University of Arts and Sciences School Innovation Fund Project(No.XJ2022000103)Lanzhou College of Arts and Sciences 2023 Talent Cultivation Quality Improvement Project(No.2023-ZL-jxzz-03)。
文摘Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods.
基金supported by National Natural Science Foundation of China (No.51867013)Natural Science Foundation of Gansu Province (No.20JR5RA414)。
文摘The purpose of this study is to analyze the galloping characteristics of the catenary positive feeder in fluctuating wind areas considering dynamic-wind angle of attack and aerodynamic damping.Firstly,the flow field model of the catenary positive feeder was established,the fluctuating wind field was simulated by Davenport wind power spectrum and linear filtering method,and the wind speed at inlet in calculation domain was controlled by editing the profile file to simulate and calculate the aerodynamic characteristics of the positive feeder in the fluctuating wind area.Then,taking the positive feeder as the research object,the mathematical model of actual structure and the corresponding finite element model were established.By applying the wind load to the finite element model,the influence of aerodynamic damping caused by the self-movement of the positive feeder on the galloping response was analyzed,and the frequency domain characteristics of galloping displacement of the positive feeder considering aerodynamic damping were studied.Finally,the calculation method of aerodynamic damping by the Guidelines for Electrical Transmission Line Structural Loading(ASCE No.74)was used for the galloping response of the positive feeder and compared with the proposed method.The results show that when considering aerodynamic damping,the galloping amplitude of the positive feeder decreases significantly,and the first-order resonance effect on the vertical displacement and horizontal displacement decreases significantly.The galloping trajectories calculated by the two methods are consistent.Therefore,this study is of great significance to further clarify the ice-free galloping mechanism of the catenary positive feeder in violent wind areas.