期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
T2 mapping识别肥厚型心肌病心肌损伤的价值研究
1
作者 杨淑娟 王家鑫 +4 位作者 杨文静 董志翔 陈秀玉 徐磊 赵世华 《心肺血管病杂志》 CAS 2024年第12期1312-1318,共7页
目的:探讨肥厚型心肌病(hypertrophic cardiomyopathy,HCM)的T2值与hs-cTn I间的关系。方法:前瞻性纳入2023年2月至2023年5月期间接受3.0T心脏磁共振检查的HCM患者50例,20例年龄和性别匹配的健康志愿者作为对照组。所有患者还接受了实... 目的:探讨肥厚型心肌病(hypertrophic cardiomyopathy,HCM)的T2值与hs-cTn I间的关系。方法:前瞻性纳入2023年2月至2023年5月期间接受3.0T心脏磁共振检查的HCM患者50例,20例年龄和性别匹配的健康志愿者作为对照组。所有患者还接受了实验室检查和冠状动脉筛查。心肌损伤定义为hs-cTn I的异常升高(>0.016 ng/mL)。计算左心室短轴层面的整体T1/T2值、最大T1/T2值和Consept法测量的室间隔T1/T2值,并对左心室钆对比剂延迟强化(late gadolinium enhancement,LGE)范围进行定量分析。结果:HCM患者中,男37例,年龄(49±13)岁,25例hs-cTn I异常升高,25例hs-cTn I水平正常。hs-cTn I升高组的整体T2值、室间隔T2值、最大T2值、整体T1值、室间隔T1值和LGE范围均高于hs-cTn I正常组(P<0.05)。室间隔T2值(r=0.52,P<0.001)和LGE范围(r=0.52,P<0.001)均与hs-cTn I水平呈正相关。在所有定量参数中,室间隔T2值在识别心肌损伤的效能最佳(曲线下面积=0.83)。在多因素Logistic回归分析中,分别校正了LVEF、舒张末容积指数、心肌质量指数、LGE范围、整体T1值和室间隔T1值后,室间隔T2值仍与hs-cTn I升高显著相关(P<0.01)。结论:在HCM患者中,基于T2 mapping测量的T2值与hs-cTn I异常升高密切相关,T2 mapping可能是HCM活动性心肌损伤的在体影像学标志物。 展开更多
关键词 磁共振成像 定量参数成像 肥厚型心肌病 心肌损伤 心肌水肿
在线阅读 下载PDF
External and Internal Validation of a Computer Assisted Diagnostic Model for Detecting Multi-Organ Mass Lesions in CT images 被引量:1
2
作者 Lianyan Xu Ke Yan +4 位作者 Le Lu Weihong Zhang Xu Chen Xiaofei Huo Jingjing Lu 《Chinese Medical Sciences Journal》 CAS CSCD 2021年第3期210-217,共8页
Objective We developed a universal lesion detector(ULDor)which showed good performance in in-lab experiments.The study aims to evaluate the performance and its ability to generalize in clinical setting via both extern... Objective We developed a universal lesion detector(ULDor)which showed good performance in in-lab experiments.The study aims to evaluate the performance and its ability to generalize in clinical setting via both external and internal validation.Methods The ULDor system consists of a convolutional neural network(CNN)trained on around 80 K lesion annotations from about 12 K CT studies in the DeepLesion dataset and 5 other public organ-specific datasets.During the validation process,the test sets include two parts:the external validation dataset which was comprised of 164 sets of non-contrasted chest and upper abdomen CT scans from a comprehensive hospital,and the internal validation dataset which was comprised of 187 sets of low-dose helical CT scans from the National Lung Screening Trial(NLST).We ran the model on the two test sets to output lesion detection.Three board-certified radiologists read the CT scans and verified the detection results of ULDor.We used positive predictive value(PPV)and sensitivity to evaluate the performance of the model in detecting space-occupying lesions at all extra-pulmonary organs visualized on CT images,including liver,kidney,pancreas,adrenal,spleen,esophagus,thyroid,lymph nodes,body wall,thoracic spine,etc.Results In the external validation,the lesion-level PPV and sensitivity of the model were 57.9%and 67.0%,respectively.On average,the model detected 2.1 findings per set,and among them,0.9 were false positives.ULDor worked well for detecting liver lesions,with a PPV of 78.9%and a sensitivity of 92.7%,followed by kidney,with a PPV of 70.0%and a sensitivity of 58.3%.In internal validation with NLST test set,ULDor obtained a PPV of 75.3%and a sensitivity of 52.0%despite the relatively high noise level of soft tissue on images.Conclusions The performance tests of ULDor with the external real-world data have shown its high effectiveness in multiple-purposed detection for lesions in certain organs.With further optimisation and iterative upgrades,ULDor may be well suited for extensive application to external data. 展开更多
关键词 lesion detection computer-aided diagnosis convolutional neural network deep learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部