旋翼无人机能够实时精准感知自身位置是无人机实现后续相关技术的关键前提之一。为了提高旋翼无人机的定位精度,提出了一种基于激光雷达的SLAM(Simultaneous Localization and Mapping)定位方法。该方法通过融合三维激光雷达与IMU(Inert...旋翼无人机能够实时精准感知自身位置是无人机实现后续相关技术的关键前提之一。为了提高旋翼无人机的定位精度,提出了一种基于激光雷达的SLAM(Simultaneous Localization and Mapping)定位方法。该方法通过融合三维激光雷达与IMU(Inertial Measurement Unit)来提升系统整体性能,对点云进行降采样,利用激光点云信息对旋翼无人机的高程进行计算,对激光雷达帧间匹配得到的有累计误差的高度变化进行更新,利用回环检测技术增加闭环约束,最后在SLAM系统后端进行联合优化。在保证无人机平稳飞行的状态下,该方法比A-LOAM算法在轨迹的平均误差上降低了约4倍,高程精度提升一个数量级至厘米级,改进了系统对高度不敏感以及误差积累过大的问题,提高了无人机工作效率及安全性。展开更多
文摘针对通信距离受限下无人机集群轨迹规划时效性与安全性问题,本文构建了分布式滚动规划框架,提出了局部优先级解耦的序列凸优化方法(local-priority-decoupled sequential convex programming,LPD-SCP),将集群轨迹规划问题分解为一系列短时域单机凸优化子问题,在保证求解效率的基础上确保了轨迹的安全性.本文推导了确保飞行安全的可行规划时域长度,设计了通信距离受限的局部优先级解耦机制,根据通信状态动态调整邻域内无人机规避优先级,实现通信距离受限下的机间避撞.更进一步,定制了轨迹时间一致协调策略,通过更新飞行时间下边界约束,实现邻域内无人机飞行时间一致性.理论分析了所提LPD-SCP能够通过多次滚动规划获得满足约束的集群轨迹.数值仿真试验结果表明:LPD-SCP能够在通信距离受限条件下规划出满足飞行动力学、机间避碰与时间一致约束的协同轨迹,且15架无人机短时域集结轨迹生成时间不大于4 s.