1 问题的提出 状态空间H=l^2,控制空间U=l^2,状态X∈H,控制U∈L^1[0,T;U],A=[a_(1j)],B=[b_(ij)] 基本假设:A=(a(1j))满足 满足 sum form i=1 to ∞ sum form j=1 to ∞ α_(ij)~2<+∞,B=(b_(ij)满足sum form i=1 to ∞ sum form j=1...1 问题的提出 状态空间H=l^2,控制空间U=l^2,状态X∈H,控制U∈L^1[0,T;U],A=[a_(1j)],B=[b_(ij)] 基本假设:A=(a(1j))满足 满足 sum form i=1 to ∞ sum form j=1 to ∞ α_(ij)~2<+∞,B=(b_(ij)满足sum form i=1 to ∞ sum form j=1 to ∞b_(ij)~2<+∞。 本文的工作是在基本假设下,找有限维系统使其解逼近系统(1)的解,同时保持系统(1)的主要性质。展开更多
文摘1 问题的提出 状态空间H=l^2,控制空间U=l^2,状态X∈H,控制U∈L^1[0,T;U],A=[a_(1j)],B=[b_(ij)] 基本假设:A=(a(1j))满足 满足 sum form i=1 to ∞ sum form j=1 to ∞ α_(ij)~2<+∞,B=(b_(ij)满足sum form i=1 to ∞ sum form j=1 to ∞b_(ij)~2<+∞。 本文的工作是在基本假设下,找有限维系统使其解逼近系统(1)的解,同时保持系统(1)的主要性质。