期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hyper-SegUNet:基于超网络的超参自学习医学图像分割模型 被引量:2
1
作者 郭逸凡 裴瑄 +1 位作者 王大寒 陈培芝 《四川师范大学学报(自然科学版)》 CAS 2024年第1期127-135,共9页
为解决在训练UNet及其变种时需要手动选择超参数的缺陷,提出一种嵌入超网络(Hypernetworks)的医学图像分割模型Hyper-SegUNet.首先,构建编码器和解码器组成的U型网络结构.然后,将多组超参数作为解码器的输入单元,进而输出多组不同超参... 为解决在训练UNet及其变种时需要手动选择超参数的缺陷,提出一种嵌入超网络(Hypernetworks)的医学图像分割模型Hyper-SegUNet.首先,构建编码器和解码器组成的U型网络结构.然后,将多组超参数作为解码器的输入单元,进而输出多组不同超参数下的性能,并从中挑选最优超参数.在腹部多器官分割数据集Synapse和心脏单器官分割数据集ACDC的实验结果表明,该模型可以自动选择超参数,而且分割准确性优于基线方法. 展开更多
关键词 医学图像分割 超网络 超参数搜索 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部