期刊导航
期刊开放获取
唐山市科学技术情报研究..
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
Hyper-SegUNet:基于超网络的超参自学习医学图像分割模型
被引量:
2
1
作者
郭逸凡
裴瑄
+1 位作者
王大寒
陈培芝
《四川师范大学学报(自然科学版)》
CAS
2024年第1期127-135,共9页
为解决在训练UNet及其变种时需要手动选择超参数的缺陷,提出一种嵌入超网络(Hypernetworks)的医学图像分割模型Hyper-SegUNet.首先,构建编码器和解码器组成的U型网络结构.然后,将多组超参数作为解码器的输入单元,进而输出多组不同超参...
为解决在训练UNet及其变种时需要手动选择超参数的缺陷,提出一种嵌入超网络(Hypernetworks)的医学图像分割模型Hyper-SegUNet.首先,构建编码器和解码器组成的U型网络结构.然后,将多组超参数作为解码器的输入单元,进而输出多组不同超参数下的性能,并从中挑选最优超参数.在腹部多器官分割数据集Synapse和心脏单器官分割数据集ACDC的实验结果表明,该模型可以自动选择超参数,而且分割准确性优于基线方法.
展开更多
关键词
医学图像分割
超网络
超参数搜索
深度学习
在线阅读
下载PDF
职称材料
题名
Hyper-SegUNet:基于超网络的超参自学习医学图像分割模型
被引量:
2
1
作者
郭逸凡
裴瑄
王大寒
陈培芝
机构
厦门理工学院
计算机与信息工程
学院
厦门理工学院福建省模式识别与图像理解重点实验室
出处
《四川师范大学学报(自然科学版)》
CAS
2024年第1期127-135,共9页
基金
国家自然科学基金(61801413)。
文摘
为解决在训练UNet及其变种时需要手动选择超参数的缺陷,提出一种嵌入超网络(Hypernetworks)的医学图像分割模型Hyper-SegUNet.首先,构建编码器和解码器组成的U型网络结构.然后,将多组超参数作为解码器的输入单元,进而输出多组不同超参数下的性能,并从中挑选最优超参数.在腹部多器官分割数据集Synapse和心脏单器官分割数据集ACDC的实验结果表明,该模型可以自动选择超参数,而且分割准确性优于基线方法.
关键词
医学图像分割
超网络
超参数搜索
深度学习
Keywords
medical image segmentation
hypernetworks
hyperparameter search
deep learning
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
Hyper-SegUNet:基于超网络的超参自学习医学图像分割模型
郭逸凡
裴瑄
王大寒
陈培芝
《四川师范大学学报(自然科学版)》
CAS
2024
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部