对于局部火灾,需要考虑建筑物构件在不均匀受热情况下的热学与力学响应。以方钢管梁为研究对象,模拟其不同高度处承受底部火羽流冲击作用的热力学现象。不同于应用绝热表面温度概念来实现流固传热的单向迭代耦合,提出一种新的计算流体力...对于局部火灾,需要考虑建筑物构件在不均匀受热情况下的热学与力学响应。以方钢管梁为研究对象,模拟其不同高度处承受底部火羽流冲击作用的热力学现象。不同于应用绝热表面温度概念来实现流固传热的单向迭代耦合,提出一种新的计算流体力学-有限元数值(computational fluid dynamics-finite element method,CFD-FEM)模拟手段,通过采用CFD方法统一分析火灾模块与热模块来实现流固传热界面的双向直接耦合。首先通过典型局部火灾试验验证了该数值方法的准确性。继而在火灾模块中探究了空间速度场与温度场的分布规律,在热模块中探究了不同高度处钢梁壁面热流的变化规律,以及辐射与对流热流随时间的变化规律。最后以固体温度为边界条件完成了结构模块分析,实现了固体域热力耦合,探讨了在此局部火灾场景下不同高度处钢梁的力学响应,探讨了其在受热后出现的屈服强度退化现象。展开更多
文摘对于局部火灾,需要考虑建筑物构件在不均匀受热情况下的热学与力学响应。以方钢管梁为研究对象,模拟其不同高度处承受底部火羽流冲击作用的热力学现象。不同于应用绝热表面温度概念来实现流固传热的单向迭代耦合,提出一种新的计算流体力学-有限元数值(computational fluid dynamics-finite element method,CFD-FEM)模拟手段,通过采用CFD方法统一分析火灾模块与热模块来实现流固传热界面的双向直接耦合。首先通过典型局部火灾试验验证了该数值方法的准确性。继而在火灾模块中探究了空间速度场与温度场的分布规律,在热模块中探究了不同高度处钢梁壁面热流的变化规律,以及辐射与对流热流随时间的变化规律。最后以固体温度为边界条件完成了结构模块分析,实现了固体域热力耦合,探讨了在此局部火灾场景下不同高度处钢梁的力学响应,探讨了其在受热后出现的屈服强度退化现象。