Metallic titanium was electrochemically dissoluted in absolute ethanol in the presence of Et4N· Br(as electro conductive additive),The electrolyte solution was then directly hydrolysized to obtain nanocrystalline...Metallic titanium was electrochemically dissoluted in absolute ethanol in the presence of Et4N· Br(as electro conductive additive),The electrolyte solution was then directly hydrolysized to obtain nanocrystalline TiO2.The powder obtained was calcined at 720℃ for 1 h.FT IR,Raman spectra,XRD and TEM were used to investigate the structure and particle size of the powder.Studies showed that the nanocrystalline TiO2 prepared by this method was of monocline structure with high textural stability and narrow size distribution of 10- 20 nm,and its Raman spectra showed a shift of about 25 cm- 1.The experiments also showed that the product yield could be improved by controlling the temperature under 50- 60℃ ,selecting R4N· Br as conductive additive and preventing titanium anode from being passivated.The electrochemical dissolution of metal anode may be recommanded as a promising technique for the synthesis of nanomaterials.展开更多
运用电化学阻抗谱和循环伏安法研究了在1 mol/L L iPF6-EC/DEC/DMC电解液中,不同甲醇杂质含量对石墨电极性能的影响及其机制.结果表明,甲醇对石墨电极性能的影响与电解液中甲醇的含量有关;其对石墨电极性能的影响机制为甲醇在2.0 V左右...运用电化学阻抗谱和循环伏安法研究了在1 mol/L L iPF6-EC/DEC/DMC电解液中,不同甲醇杂质含量对石墨电极性能的影响及其机制.结果表明,甲醇对石墨电极性能的影响与电解液中甲醇的含量有关;其对石墨电极性能的影响机制为甲醇在2.0 V左右还原生成的甲氧基锂沉积在石墨电极表面上,形成一层初始SEI膜,影响了EC的还原分解成膜过程.展开更多
文摘Metallic titanium was electrochemically dissoluted in absolute ethanol in the presence of Et4N· Br(as electro conductive additive),The electrolyte solution was then directly hydrolysized to obtain nanocrystalline TiO2.The powder obtained was calcined at 720℃ for 1 h.FT IR,Raman spectra,XRD and TEM were used to investigate the structure and particle size of the powder.Studies showed that the nanocrystalline TiO2 prepared by this method was of monocline structure with high textural stability and narrow size distribution of 10- 20 nm,and its Raman spectra showed a shift of about 25 cm- 1.The experiments also showed that the product yield could be improved by controlling the temperature under 50- 60℃ ,selecting R4N· Br as conductive additive and preventing titanium anode from being passivated.The electrochemical dissolution of metal anode may be recommanded as a promising technique for the synthesis of nanomaterials.
文摘运用电化学阻抗谱和循环伏安法研究了在1 mol/L L iPF6-EC/DEC/DMC电解液中,不同甲醇杂质含量对石墨电极性能的影响及其机制.结果表明,甲醇对石墨电极性能的影响与电解液中甲醇的含量有关;其对石墨电极性能的影响机制为甲醇在2.0 V左右还原生成的甲氧基锂沉积在石墨电极表面上,形成一层初始SEI膜,影响了EC的还原分解成膜过程.