目的利用2023年新推出的YOLOv8m网络,开发一款人工智能辅助系统,旨在实现腺瘤性息肉的自动定位和诊断。方法使用4个结肠息肉数据集,总计包括9411张静态图像和25段视频。所涵盖的息肉类别包括增生性息肉和腺瘤性息肉。利用LabelMe工具对...目的利用2023年新推出的YOLOv8m网络,开发一款人工智能辅助系统,旨在实现腺瘤性息肉的自动定位和诊断。方法使用4个结肠息肉数据集,总计包括9411张静态图像和25段视频。所涵盖的息肉类别包括增生性息肉和腺瘤性息肉。利用LabelMe工具对图像进行标注,并将标注数据转换成适用于深度学习模型训练的YOLO格式。在模型训练方面,采用预训练的YOLOv5m和YOLOv8m模型,并结合实时数据增强以及多种图像处理技术进行迁移学习训练。模型性能的评估采用多个指标,包括敏感性、特异性、假阳性率和检测速度(每秒帧数,frames per second,FPS)、平均精度(mean average precision,mAP)等。此外,还使用混淆矩阵进行详细评估,并将模型的性能与不同资历的医师进行比较分析。结果在对1411个息肉的验证集进行评估中,YOLOv8m模型在多项性能指标上超越了YOLOv5。YOLOv8m的整体准确率为98.58%,在腺瘤性息肉、增生性息肉检测的敏感性分别为98.06%和99.32%,特异性分别为99.33%和98.09%,不同类型息肉预测的mAP50为0.994。在与内镜医师的性能比较中,YOLOv8m模型在准确率(98.58%)和处理速度(60.61帧/s)方面均优于低年资(准确率为86.02%)和高年资内镜医师(准确率为93.14%),其处理速度是低年资内镜医师的67.2倍。结论基于YOLOv8m网络的深度学习模型能够快速、精确地检测与分类结直肠息肉,在辅助内镜医师提高腺瘤性息肉检出率方面展现出很大的应用潜力。展开更多
文摘目的利用2023年新推出的YOLOv8m网络,开发一款人工智能辅助系统,旨在实现腺瘤性息肉的自动定位和诊断。方法使用4个结肠息肉数据集,总计包括9411张静态图像和25段视频。所涵盖的息肉类别包括增生性息肉和腺瘤性息肉。利用LabelMe工具对图像进行标注,并将标注数据转换成适用于深度学习模型训练的YOLO格式。在模型训练方面,采用预训练的YOLOv5m和YOLOv8m模型,并结合实时数据增强以及多种图像处理技术进行迁移学习训练。模型性能的评估采用多个指标,包括敏感性、特异性、假阳性率和检测速度(每秒帧数,frames per second,FPS)、平均精度(mean average precision,mAP)等。此外,还使用混淆矩阵进行详细评估,并将模型的性能与不同资历的医师进行比较分析。结果在对1411个息肉的验证集进行评估中,YOLOv8m模型在多项性能指标上超越了YOLOv5。YOLOv8m的整体准确率为98.58%,在腺瘤性息肉、增生性息肉检测的敏感性分别为98.06%和99.32%,特异性分别为99.33%和98.09%,不同类型息肉预测的mAP50为0.994。在与内镜医师的性能比较中,YOLOv8m模型在准确率(98.58%)和处理速度(60.61帧/s)方面均优于低年资(准确率为86.02%)和高年资内镜医师(准确率为93.14%),其处理速度是低年资内镜医师的67.2倍。结论基于YOLOv8m网络的深度学习模型能够快速、精确地检测与分类结直肠息肉,在辅助内镜医师提高腺瘤性息肉检出率方面展现出很大的应用潜力。