期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多尺度特征融合的遥感图像语义分割方法 被引量:2
1
作者 吴宁 罗杨洋 许华杰 《计算机应用》 CSCD 北大核心 2024年第3期737-744,共8页
为提高遥感图像语义分割精度,解决深度卷积神经网络(DCNN)特征提取过程中小尺寸目标信息丢失的问题,提出一种基于多尺度特征融合的语义分割方法FuseSwin。首先,在Swin Transformer中引入注意力增强模块(AEM),以突出目标所在区域并抑制... 为提高遥感图像语义分割精度,解决深度卷积神经网络(DCNN)特征提取过程中小尺寸目标信息丢失的问题,提出一种基于多尺度特征融合的语义分割方法FuseSwin。首先,在Swin Transformer中引入注意力增强模块(AEM),以突出目标所在区域并抑制背景噪声的干扰;其次,利用特征金字塔网络(FPN)融合多尺度特征的细节信息和高级语义信息,以补充目标的特征;最后,通过空洞空间金字塔池化(ASPP)模块从融合特征图中进一步捕获目标的上下文信息,提升模型分割精度。实验结果表明,所提方法在Potsdam遥感数据集上的平均像素准确率(mPA)和平均交并比(mIoU),与DeepLabV3方法相比,分别提高了2.34、3.23个百分点;与SegFormer方法相比,分别提高了1.28、1.75个百分点,优于目前主流的分割方法。此外,将所提方法实际应用于广西钦州茅尾海的高分辨率遥感图像中的蚝排识别与分割,分别取得96.21%、91.70%的像素准确率(PA)和交并比(IoU)。 展开更多
关键词 遥感图像 语义分割 多尺度 特征融合 Swin Transformer
在线阅读 下载PDF
基于递归门控卷积的遥感图像超分辨率研究 被引量:2
2
作者 刘长新 吴宁 +2 位作者 胡俐蕊 高霸 高学山 《计算机科学》 CSCD 北大核心 2024年第2期205-216,共12页
由于受到硬件条件的限制,通常难以获得具有高分辨率(HR)的遥感图像。利用单幅图像超分辨率(SISR)技术对低分辨率(LR)遥感图像进行超分辨率重建是获取高分辨率遥感图像的常用方法。近年来,在图像超分辨率领域引入的卷积神经网络(CNN)改... 由于受到硬件条件的限制,通常难以获得具有高分辨率(HR)的遥感图像。利用单幅图像超分辨率(SISR)技术对低分辨率(LR)遥感图像进行超分辨率重建是获取高分辨率遥感图像的常用方法。近年来,在图像超分辨率领域引入的卷积神经网络(CNN)改进了图像重建性能。然而,现有的基于CNN的超分辨率模型通常使用低阶注意力机制提取深层特征,其表征能力有待提高,且常规卷积的感受野有限,缺乏对远距离依赖关系的学习。为了解决以上问题,提出了一种基于递归门控卷积的遥感图像超分辨率方法RGCSR。该方法引入递归门控卷积g n Conv学习全局依赖和局部细节,通过高阶空间交互来获取高阶特征。首先,使用由高阶交互子模块(HorBlock)和前馈神经网络(FFN)组成的高阶交互——前馈神经网络模块(HFB)提取高阶特征。其次,利用由通道注意力(CA)和g n Conv构建的特征优化模块(FOB)优化各个中间模块的输出特征。最后,在多个数据集上的对比结果表明,RGCSR比现有的基于CNN的超分辨率方法具备更好的重建性能和视觉效果。 展开更多
关键词 递归门控卷积 高阶空间交互 通道注意力 遥感图像 超分辨率
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部