期刊导航
期刊开放获取
唐山市科学技术情报研究..
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Transformer和LSTM算法的河套灌区土壤水分预测研究
1
作者
王钥
郑方元
+3 位作者
雍婷
查元源
周龙才
徐祥森
《节水灌溉》
北大核心
2025年第2期1-8,14,共9页
土壤水是土壤中的关键指标,其变化直接影响着作物生长,并影响着水资源利用的管理决策。因此,准确地预测土壤水分有利于对农业水资源进行合理的规划利用。使用深度学习算法进行土壤水分预测在当前的农业、水资源管理和生态学等领域具有...
土壤水是土壤中的关键指标,其变化直接影响着作物生长,并影响着水资源利用的管理决策。因此,准确地预测土壤水分有利于对农业水资源进行合理的规划利用。使用深度学习算法进行土壤水分预测在当前的农业、水资源管理和生态学等领域具有重要性。深度学习算法能够从大规模数据中学习土壤水分的复杂模式和时空关系,为土壤水的准确预测提供了新的机会。为了探索新兴深度学习方法Transformer在土壤水分预测中的有效性,选择河套灌区义长灌域为研究区域,利用地下水位观测数据、气象数据、SMAP土壤水数据等作为训练数据,设置了1、5、10 d共3种数据滞后情况,验证Transformer算法在土壤水时间序列预测任务中的有效性,并与目前广泛应用于时序预测任务中的LSTM进行对比。研究表明Transformer在土壤水分时间序列预测任务中具有更好的预测能力,相比于LSTM,其R^(2)平均提升约0.181,RMSE平均下降27.6%。同时,Transformer在应对滞后变化带来的影响时更具鲁棒性,在3种数据滞后情况下Transformer的预测平均R^(2)分别比LSTM高出了0.121、0.167、0.256,站点平均RMSE分别降低了30.7%、28.6%、23.5%。此外,Transformer对于土壤水序列中的非线性信息的提取能力更强,对于高频振幅的土壤水时间序列Transformer拥有更强的预测能力。
展开更多
关键词
土壤水分预测
深度学习
时序预测
Transformer模型
LSTM模型
数据滞后
在线阅读
下载PDF
职称材料
题名
基于Transformer和LSTM算法的河套灌区土壤水分预测研究
1
作者
王钥
郑方元
雍婷
查元源
周龙才
徐祥森
机构
武汉
大学水资源工程与调度全国重点实验室
武汉科瑞特力自动化设备有限公司
中工武大设计研究
有限公司
出处
《节水灌溉》
北大核心
2025年第2期1-8,14,共9页
基金
国家自然科学基金(52279042)
广西科技计划项目(桂科AB23026021)。
文摘
土壤水是土壤中的关键指标,其变化直接影响着作物生长,并影响着水资源利用的管理决策。因此,准确地预测土壤水分有利于对农业水资源进行合理的规划利用。使用深度学习算法进行土壤水分预测在当前的农业、水资源管理和生态学等领域具有重要性。深度学习算法能够从大规模数据中学习土壤水分的复杂模式和时空关系,为土壤水的准确预测提供了新的机会。为了探索新兴深度学习方法Transformer在土壤水分预测中的有效性,选择河套灌区义长灌域为研究区域,利用地下水位观测数据、气象数据、SMAP土壤水数据等作为训练数据,设置了1、5、10 d共3种数据滞后情况,验证Transformer算法在土壤水时间序列预测任务中的有效性,并与目前广泛应用于时序预测任务中的LSTM进行对比。研究表明Transformer在土壤水分时间序列预测任务中具有更好的预测能力,相比于LSTM,其R^(2)平均提升约0.181,RMSE平均下降27.6%。同时,Transformer在应对滞后变化带来的影响时更具鲁棒性,在3种数据滞后情况下Transformer的预测平均R^(2)分别比LSTM高出了0.121、0.167、0.256,站点平均RMSE分别降低了30.7%、28.6%、23.5%。此外,Transformer对于土壤水序列中的非线性信息的提取能力更强,对于高频振幅的土壤水时间序列Transformer拥有更强的预测能力。
关键词
土壤水分预测
深度学习
时序预测
Transformer模型
LSTM模型
数据滞后
Keywords
soil moisture prediction
deep learning
time series prediction
Transformer model
LSTM model
data lag
分类号
S27 [农业科学—农业水土工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Transformer和LSTM算法的河套灌区土壤水分预测研究
王钥
郑方元
雍婷
查元源
周龙才
徐祥森
《节水灌溉》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部