在传统测向方法中,测向精度正比于阵列孔径,因此布阵空间与测向精度的矛盾性成为电子侦察系统在无人机等平台应用的主要工程约束之一。为实现空间受限下的高精度测向,提出一种通过协方差矩阵重构阵列接收数据的波达方向(Direction of Ar...在传统测向方法中,测向精度正比于阵列孔径,因此布阵空间与测向精度的矛盾性成为电子侦察系统在无人机等平台应用的主要工程约束之一。为实现空间受限下的高精度测向,提出一种通过协方差矩阵重构阵列接收数据的波达方向(Direction of Arrival,DOA)方法。结合均匀线阵的结构特点以及导向矢量Vandermonde矩阵与协方差Toeplitz矩阵的矩阵特征,通过重构阵列数据接收模型,实现阵列孔径的拓展,可在布阵空间不变的条件下显著提升阵列的测向精度。仿真结果表明,这种基于协方差数据重构的DOA方法实用有效,可作为传统DOA技术的前处理手段,提升算法性能及处理增益。展开更多
文摘在传统测向方法中,测向精度正比于阵列孔径,因此布阵空间与测向精度的矛盾性成为电子侦察系统在无人机等平台应用的主要工程约束之一。为实现空间受限下的高精度测向,提出一种通过协方差矩阵重构阵列接收数据的波达方向(Direction of Arrival,DOA)方法。结合均匀线阵的结构特点以及导向矢量Vandermonde矩阵与协方差Toeplitz矩阵的矩阵特征,通过重构阵列数据接收模型,实现阵列孔径的拓展,可在布阵空间不变的条件下显著提升阵列的测向精度。仿真结果表明,这种基于协方差数据重构的DOA方法实用有效,可作为传统DOA技术的前处理手段,提升算法性能及处理增益。
文摘将深度学习模型应用至电子干扰技术来生成干扰信号具有重要的现实意义。将生成对抗网络(generative adversarial network,GAN)应用于信号生成领域,对电磁扩频信号频谱数据的分布进行深度学习,并生成与其相干的干扰信号。在实验中GAN的生成器和判别器互相博弈训练,通过自适应矩估计(adaptive moment estimation,Adam)进行优化,最终训练出良好的模型,可以生成所需信号。实验结果表明,基于GAN的信号生成算法生成的数据分布已基本具备真实数据分布普遍具有的特点,对同一信噪比的电磁频谱数据进行深度学习后,生成数据能够较为准确地学习到不同信噪比电磁频谱数据的不同特点。