期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于改进的YOLOv8n海洋动物目标检测算法:DPSC-YOLO
1
作者 梁佳杰 徐慧英 +3 位作者 朱信忠 王舒梦 刘子洋 李琛 《计算机工程与科学》 北大核心 2025年第4期695-705,共11页
在海洋复杂的环境中,由于图像拍摄模糊、背景复杂,导致基于深度学习的目标检测算法存在特征提取困难和目标漏检等问题,因此海洋目标检测算法需要更加高效且性能优越。为此提出了一种基于YOLOv8n改进的海洋动物目标检测算法:DPSC-YOLO。... 在海洋复杂的环境中,由于图像拍摄模糊、背景复杂,导致基于深度学习的目标检测算法存在特征提取困难和目标漏检等问题,因此海洋目标检测算法需要更加高效且性能优越。为此提出了一种基于YOLOv8n改进的海洋动物目标检测算法:DPSC-YOLO。在主干网络中引入DCNv2模块,通过增强空间建模能力来适应对象的几何变化;在主干网络末端引入空间金字塔池化SPPFCSPC,在保持模型感知场不变的同时减少模型的计算量;在颈部网络增加F 2极小目标检测头,结合其余3个尺度,使用4个不同的感受野检测层提高小目标检测精度;在颈部网络的C2f模块中结合CoTAttention注意力机制更好地利用相邻键之间的上下文信息,并根据数据的特点动态调整注意力分配。实验结果表明,DPSC-YOLO目标检测算法与YOLOv8n相比mAP@0.5提升了1.1%,mAP@0.5:0.95提升了4.6%,同时仅有较少的参数量和计算量的增加,证明DPSC-YOLO更适合复杂海洋环境中的目标检测任务。 展开更多
关键词 YOLOv8 DCNv2 SPPFCSPC 上下文注意力机制 小目标检测头
在线阅读 下载PDF
Bi-YOLO:一种基于YOLOv8n改进的轻量化目标检测算法 被引量:20
2
作者 刘子洋 徐慧英 +4 位作者 朱信忠 李琛 王泽宇 曹雨淇 戴康佳 《计算机工程与科学》 CSCD 北大核心 2024年第8期1444-1454,共11页
以YOLOv8为代表的单阶段目标检测算法,在骨干网络中有比较明显的优化,但在颈部网络未能高效地融合上下文信息,导致在小目标检测方面存在漏检、错检的问题,并且还存在模型参数量大、计算复杂度高的问题,无法满足端到端的工业部署需求。... 以YOLOv8为代表的单阶段目标检测算法,在骨干网络中有比较明显的优化,但在颈部网络未能高效地融合上下文信息,导致在小目标检测方面存在漏检、错检的问题,并且还存在模型参数量大、计算复杂度高的问题,无法满足端到端的工业部署需求。针对以上问题,引入基于Transformer结构的BiFormer注意力机制,加强对小目标的检测性能,提升算法的精度;引入GSConv模块,在保证算法性能不受到负面影响的前提下减小算法规模。为了平衡BiFormer带来的计算量和参数量的增加,设计了一种名为Bi-YOLO的目标检测算法,以达到轻量化和算法性能的平衡。实验结果表明,Bi-YOLO目标检测算法和YOLOv8n相比,算法精度提高了4.6%,DOTA数据集小目标检测精度提高了2.3%,参数量下降了12.5%。Bi-YOLO有效实现了模型轻量化和性能的平衡,为端到端的工业部署提供了新思路。 展开更多
关键词 YOLOv8 BiFormer 轻量化改进 目标检测 端到端工业部署
在线阅读 下载PDF
基于YOLOv8改进的室内行人跌倒检测算法FDW-YOLO 被引量:4
3
作者 陈晨 徐慧英 +5 位作者 朱信忠 黄晓 宋杰 曹雨淇 周思瑜 盛轲 《计算机工程与科学》 CSCD 北大核心 2024年第8期1455-1465,共11页
针对室内场景中由于光照变化、人体形态被遮挡以及在特殊视角下人体姿态变化等因素导致行人跌倒检测精度低、实时性差的问题,提出了一种基于YOLOv8改进的轻量级跌倒检测算法FDW-YOLO。将骨干网络中的C2f模块替换成FasterNext模块,增强... 针对室内场景中由于光照变化、人体形态被遮挡以及在特殊视角下人体姿态变化等因素导致行人跌倒检测精度低、实时性差的问题,提出了一种基于YOLOv8改进的轻量级跌倒检测算法FDW-YOLO。将骨干网络中的C2f模块替换成FasterNext模块,增强有效特征复用的同时降低计算复杂度。根据人体跌倒姿势变化大的特点,设计了3种在颈部层不同位置添加动态可变形卷积模块的网络结构,并在自制的跌倒行为目标检测数据集上进行实验比较,最终根据网络性能选择YOLOv8-C方案。在改进后的网络中引入边界框回归损失函数WIoU取代原有的CIoU。实验结果表明,FDW-YOLO跌倒检测算法较YOLOv8n在mAP@0.5指标上从96.5%提升到97.9%,在mAP@0.5:0.95指标上从72.5%提升到74.3%,同时参数量和计算量只有4.1×10^(6)和7.3×10^(9),符合在低算力工业场景中部署的要求。 展开更多
关键词 目标检测 跌倒 FasterNext DDConv WIoU
在线阅读 下载PDF
基于YOLOv8改进的打架斗殴行为识别算法:EFD-YOLO
4
作者 曹雨淇 徐慧英 +4 位作者 朱信忠 黄晓 陈晨 周思瑜 盛轲 《计算机工程与科学》 CSCD 北大核心 2024年第10期1825-1834,共10页
在当今社会,打架斗殴检测技术对于防范暴力事件和冲突至关重要。结合监控摄像头和目标检测,能够实时监测人群活动,从而有效预防潜在威胁。因此,提出了一种基于YOLOv8改进的打架斗殴行为识别算法EFD-YOLO。EFD-YOLO采用EfficientRep替换... 在当今社会,打架斗殴检测技术对于防范暴力事件和冲突至关重要。结合监控摄像头和目标检测,能够实时监测人群活动,从而有效预防潜在威胁。因此,提出了一种基于YOLOv8改进的打架斗殴行为识别算法EFD-YOLO。EFD-YOLO采用EfficientRep替换主干网络,提高了特征提取的效率,并在监控范围内实现准确实时的特征提取。引入FocalNeXt焦点模块,通过深度卷积和跳跃连接的结合,解决了遮挡问题和多尺度特征需求问题。采用Focal-DIoU作为边界框回归损失函数,在复杂情况下减少了误检的问题。实验结果显示,EFD-YOLO算法相较于YOLOv8n在mAP@0.5指标上提升了4.2%,在mAP@0.5:0.95指标上提升了2.5%,满足关键场所中实时检测打架斗殴行为的需求。 展开更多
关键词 目标检测 打架斗殴 YOLOv8 EfficientRep FocalNeXt Focal-DIoU
在线阅读 下载PDF
基于轻量化目标检测网络的RGB-D视觉SLAM系统
5
作者 戴康佳 徐慧英 +7 位作者 朱信忠 黄晓 李琛 刘巍 曹雨淇 王拔龙 刘子洋 陈国强 《计算机工程与科学》 CSCD 北大核心 2024年第11期2017-2026,共10页
RGB-D SLAM是一种利用深度相机实现同时定位和地图构建的技术。传统的视觉SLAM系统基于对静态环境的假设,然而实际环境中往往存在动态物体,这可能导致SLAM系统的位姿估计出现显著的偏差。针对这一问题,提出了基于轻量化的YOLOv8s目标检... RGB-D SLAM是一种利用深度相机实现同时定位和地图构建的技术。传统的视觉SLAM系统基于对静态环境的假设,然而实际环境中往往存在动态物体,这可能导致SLAM系统的位姿估计出现显著的偏差。针对这一问题,提出了基于轻量化的YOLOv8s目标检测的RGB-D视觉SLAM系统,采用Socket通信方式,将目标检测结果传给SLAM,然后利用Depth Value-RANSAC几何算法剔除检测框内的动态特征点,提高了SLAM系统在动态环境中的定位精度。实验使用TUM数据集进行验证,结果表明,本文系统精度相比ORB-SLAM2有明显提高。与其他SLAM系统相比,本文系统在精度和实时性上有不同程度的改进。 展开更多
关键词 RGB-D SLAM 动态场景 目标检测 几何约束
在线阅读 下载PDF
基于多尺度特征融合与背景抑制的MFFBSNet人群计数算法
6
作者 赵佳彬 徐慧英 +3 位作者 朱蓉 陈滨 王晓琳 朱信忠 《计算机工程与科学》 CSCD 北大核心 2024年第12期2205-2214,共10页
针对复杂场景中的密集人群尺度变化、分布不均匀、背景遮挡等问题,提出一种基于多尺度特征融合与背景抑制的MFFBSNet人群计数算法。以视觉几何组网络VGG-16的前13层作为网络前端部分,引入空洞空间卷积池化金字塔(ASPP)和基于轻量级金字... 针对复杂场景中的密集人群尺度变化、分布不均匀、背景遮挡等问题,提出一种基于多尺度特征融合与背景抑制的MFFBSNet人群计数算法。以视觉几何组网络VGG-16的前13层作为网络前端部分,引入空洞空间卷积池化金字塔(ASPP)和基于轻量级金字塔切分注意力机制(PSA)构建多尺度特征融合模块,以解决密集人群尺度变化问题;在网络的中间部分加入空间注意力机制以及通道注意力机制对特征图进行校准,突出图像人头区域;网络后端部分使用可加大感受野且不丢失图像分辨率的空洞卷积生成背景分割注意力图,抑制图像中背景噪声,提升人群分布密度图的质量。在ShanghaiTech、UCF_CC_50及NWPU-Crowd 3个公开数据集上的实验结果表明,相较于MCNN、SwitchCNN、CSRNet等算法,提出的基于MFFBSNet的人群计数算法的计数准确度较高。 展开更多
关键词 密集人群计数 多尺度融合 背景抑制 密度图
在线阅读 下载PDF
基于霍克斯过程的动态异质网络表征学习方法
7
作者 陈蕾 邓琨 刘星妍 《电信科学》 北大核心 2024年第8期78-93,共16页
现有的异质网络表征学习方法主要关注静态网络,忽略了时间属性对节点表示的重要影响。然而,真实的异质信息网络极具动态性,节点和边的微小变化都可能影响整个结构和语义。鉴于此,提出了基于霍克斯过程的动态异质网络表征学习方法。首先... 现有的异质网络表征学习方法主要关注静态网络,忽略了时间属性对节点表示的重要影响。然而,真实的异质信息网络极具动态性,节点和边的微小变化都可能影响整个结构和语义。鉴于此,提出了基于霍克斯过程的动态异质网络表征学习方法。首先,利用关系旋转编码方式和注意力机制,学习相邻节点的注意力系数,获得节点的向量表示。其次,学习不同元路径的最优加权组合以更好捕获网络的结构和语义信息。最后,基于时间衰减效应,通过邻域形成序列将时间特征引入节点表示中,得到节点的最终嵌入表示。在多种基准数据集上的实验结果表明,所提方法在性能上显著优于对比模型。在节点分类任务中,Macro-F1平均提高了0.15%~3.45%,在节点聚类任务中,归一化互信息(normalized mutual information,NMI)值提高了1.08%~3.57%。 展开更多
关键词 网络表征学习 动态异质信息网络 注意力机制 元路径 霍克斯过程
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部