In recent years,the number of incidents involved with unmanned aerial vehicles(UAVs)has increased conspicuously,resulting in an increasingly urgent demand for developing anti-UAV systems. The vast requirements of high...In recent years,the number of incidents involved with unmanned aerial vehicles(UAVs)has increased conspicuously,resulting in an increasingly urgent demand for developing anti-UAV systems. The vast requirements of high detection accuracy with respect to low altitude UAVs are put forward. In addition,the methods of UAV detection based on deep learning are of great potential in low altitude UAV detection. However,such methods need high-quality datasets to cope with the problem of high false alarm rate(FAR)and high missing alarm rate(MAR)in low altitude UAV detection,special high-quality low altitude UAV detection dataset is still lacking. A handful of known datasets for UAV detection have been rejected by their proposers for authorization and are of poor quality. In this paper,a comprehensive enhanced dataset containing UAVs and jamming objects is proposed. A large number of high-definition UAV images are obtained through real world shooting, web crawler, and data enhancement.Moreover,to cope with the challenge of low altitude UAV detection in complex backgrounds and long distance,as well as the puzzle caused by jamming objects,the noise with jamming characteristics is added to the dataset. Finally,the dataset is trained,validated,and tested by four mainstream deep learning models. The results indicate that by using data enhancement,adding noise contained jamming objects and images of UAV with complex backgrounds and long distance,the accuracy of UAV detection can be significantly improved. This work will promote the development of anti-UAV systems deeply,and more convincing evaluation criteria are provided for models optimization for UAV detection.展开更多
As a prospective component of the future air transportation system,unmanned aerial vehicles(UAVs)have attracted enormous interest in both academia and industry.However,small UAVs are barely supervised in the current s...As a prospective component of the future air transportation system,unmanned aerial vehicles(UAVs)have attracted enormous interest in both academia and industry.However,small UAVs are barely supervised in the current situation.Crash accidents or illegal airspace invading caused by these small drones affect public security negatively.To solve this security problem,we use the back-propagation neural network(BPNN),the support-vector machine(SVM),and the k-nearest neighbors(KNN)method to detect and classify the non-cooperative drones at the edge of the flight restriction zone based on the cepstrum of the radio frequency(RF)signal of the drone’s downlink.The signal from five various amateur drones and ambient wireless devices are sampled in an electromagnetic clean environment.The detection and classification algorithm based on the cepstrum properties is conducted.Results of the outdoor experiments suggest the proposed workflow and methods are sufficient to detect non-cooperative drones with an average accuracy of around 90%.The mainstream downlink protocols of amateur drones can be classified effectively as well.展开更多
Single object tracking based on deep learning has achieved the advanced performance in many applications of computer vision.However,the existing trackers have certain limitations owing to deformation,occlusion,movemen...Single object tracking based on deep learning has achieved the advanced performance in many applications of computer vision.However,the existing trackers have certain limitations owing to deformation,occlusion,movement and some other conditions.We propose a siamese attentional dense network called SiamADN in an end-to-end offline manner,especially aiming at unmanned aerial vehicle(UAV)tracking.First,it applies a dense network to reduce vanishing-gradient,which strengthens the features transfer.Second,the channel attention mechanism is involved into the Densenet structure,in order to focus on the possible key regions.The advance corner detection network is introduced to improve the following tracking process.Extensive experiments are carried out on four mainly tracking benchmarks as OTB-2015,UAV123,LaSOT and VOT.The accuracy rate on UAV123 is 78.9%,and the running speed is 32 frame per second(FPS),which demonstrates its efficiency in the practical real application.展开更多
随着UAM(Urban Air Mobility,城市空中交通)在全球范围内的快速发展,我国也涌现出了以亿航、小鹏、吉利为代表的行业先锋。可以预见,在未来数十年的时间内,UAM将会与传统交通方式长期共存,因此必须推进UAM与其他交通方式的深度融合,重视...随着UAM(Urban Air Mobility,城市空中交通)在全球范围内的快速发展,我国也涌现出了以亿航、小鹏、吉利为代表的行业先锋。可以预见,在未来数十年的时间内,UAM将会与传统交通方式长期共存,因此必须推进UAM与其他交通方式的深度融合,重视UAM与下游应用产业的深度融合,才能更有效地发挥UAM的作用。展开更多
基金supported by the National Natural Science Foundation of China(No. 62173237)the National Key R&D Program of China(No.2018AAA0100804)+7 种基金the Zhejiang Key laboratory of General Aviation Operation technology(No.JDGA2020-7)the Talent Project of Revitalization Liaoning(No. XLYC1907022)the Key R & D Projects of Liaoning Province (No. 2020JH2/10100045)the Natural Science Foundation of Liaoning Province(No. 2019-MS-251)the Scientific Research Project of Liaoning Provincial Department of Education(No.JYT2020142)the High-Level Innovation Talent Project of Shenyang (No.RC190030)the Science and Technology Project of Beijing Municipal Commission of Education (No. KM201811417005)the Academic Research Projects of Beijing Union University(No.ZB10202005)。
文摘In recent years,the number of incidents involved with unmanned aerial vehicles(UAVs)has increased conspicuously,resulting in an increasingly urgent demand for developing anti-UAV systems. The vast requirements of high detection accuracy with respect to low altitude UAVs are put forward. In addition,the methods of UAV detection based on deep learning are of great potential in low altitude UAV detection. However,such methods need high-quality datasets to cope with the problem of high false alarm rate(FAR)and high missing alarm rate(MAR)in low altitude UAV detection,special high-quality low altitude UAV detection dataset is still lacking. A handful of known datasets for UAV detection have been rejected by their proposers for authorization and are of poor quality. In this paper,a comprehensive enhanced dataset containing UAVs and jamming objects is proposed. A large number of high-definition UAV images are obtained through real world shooting, web crawler, and data enhancement.Moreover,to cope with the challenge of low altitude UAV detection in complex backgrounds and long distance,as well as the puzzle caused by jamming objects,the noise with jamming characteristics is added to the dataset. Finally,the dataset is trained,validated,and tested by four mainstream deep learning models. The results indicate that by using data enhancement,adding noise contained jamming objects and images of UAV with complex backgrounds and long distance,the accuracy of UAV detection can be significantly improved. This work will promote the development of anti-UAV systems deeply,and more convincing evaluation criteria are provided for models optimization for UAV detection.
基金co-supported by the National Natural Science Foundation of China (Nos. U1933130,71731001,1433203,U1533119)the Research Project of Chinese Academy of Sciences (No. ZDRW-KT-2020-21-2)。
文摘As a prospective component of the future air transportation system,unmanned aerial vehicles(UAVs)have attracted enormous interest in both academia and industry.However,small UAVs are barely supervised in the current situation.Crash accidents or illegal airspace invading caused by these small drones affect public security negatively.To solve this security problem,we use the back-propagation neural network(BPNN),the support-vector machine(SVM),and the k-nearest neighbors(KNN)method to detect and classify the non-cooperative drones at the edge of the flight restriction zone based on the cepstrum of the radio frequency(RF)signal of the drone’s downlink.The signal from five various amateur drones and ambient wireless devices are sampled in an electromagnetic clean environment.The detection and classification algorithm based on the cepstrum properties is conducted.Results of the outdoor experiments suggest the proposed workflow and methods are sufficient to detect non-cooperative drones with an average accuracy of around 90%.The mainstream downlink protocols of amateur drones can be classified effectively as well.
基金supported by the Zhejiang Key Laboratory of General Aviation Operation Technology(No.JDGA2020-7)the National Natural Science Foundation of China(No.62173237)+3 种基金the Natural Science Foundation of Liaoning Province(No.2019-MS-251)the Talent Project of Revitalization Liaoning Province(No.XLYC1907022)the Key R&D Projects of Liaoning Province(No.2020JH2/10100045)the High-Level Innovation Talent Project of Shenyang(No.RC190030).
文摘Single object tracking based on deep learning has achieved the advanced performance in many applications of computer vision.However,the existing trackers have certain limitations owing to deformation,occlusion,movement and some other conditions.We propose a siamese attentional dense network called SiamADN in an end-to-end offline manner,especially aiming at unmanned aerial vehicle(UAV)tracking.First,it applies a dense network to reduce vanishing-gradient,which strengthens the features transfer.Second,the channel attention mechanism is involved into the Densenet structure,in order to focus on the possible key regions.The advance corner detection network is introduced to improve the following tracking process.Extensive experiments are carried out on four mainly tracking benchmarks as OTB-2015,UAV123,LaSOT and VOT.The accuracy rate on UAV123 is 78.9%,and the running speed is 32 frame per second(FPS),which demonstrates its efficiency in the practical real application.
文摘随着UAM(Urban Air Mobility,城市空中交通)在全球范围内的快速发展,我国也涌现出了以亿航、小鹏、吉利为代表的行业先锋。可以预见,在未来数十年的时间内,UAM将会与传统交通方式长期共存,因此必须推进UAM与其他交通方式的深度融合,重视UAM与下游应用产业的深度融合,才能更有效地发挥UAM的作用。