期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
高光谱图像检测马铃薯植株叶绿素含量垂直分布 被引量:36
1
作者 孙红 郑涛 +3 位作者 刘宁 程萌 李民赞 Zhang Qin 《农业工程学报》 EI CAS CSCD 北大核心 2018年第1期149-156,共8页
为了检测马铃薯作物叶绿素含量,该文按照叶片垂直分布位置采集马铃薯叶片样本的成像高光谱数据,提取并计算了400个划分区域的平均光谱,使用手持式SPAD-502叶绿素仪测定了相应位置的SPAD(soil plant analysis development)值。采用标准... 为了检测马铃薯作物叶绿素含量,该文按照叶片垂直分布位置采集马铃薯叶片样本的成像高光谱数据,提取并计算了400个划分区域的平均光谱,使用手持式SPAD-502叶绿素仪测定了相应位置的SPAD(soil plant analysis development)值。采用标准正态变量校正(standard normal variate,SNV)方法对光谱数据进行预处理,分析了开花期植株自下而上垂直叶位间光谱和叶绿素分布关系,其光谱反射率在382~700 nm区间随叶位的升高反射率增加(上>中>下),在700~1 019 nm范围下叶位反射率高于上部和中部叶位(下>上>中),且SPAD均值依次为36.41、43.11、47.04。分别采用相关系数分析法和随机蛙跳(random frog,RF)算法筛选叶绿素含量敏感波长,并建立偏最小二乘回归(partial least squares regression,PLSR)模型。结果如下:基于相关系数分析法筛选的12个敏感波长主要位于530~550和706~708nm范围,建模精度RC2为0.7 588,验证精度RV2为0.5 773;基于random frog算法筛选的11个敏感波长(554.62、560.26、575.04、576.35、595.09、604.7、649.44、731.8、752.78、786.38、789.97 nm),建模精度RC2为0.8 423,验证精度RV2为0.7 676。选取RF-PLS模型计算马铃薯叶片每个像素点的叶绿素含量,绘制不同叶位马铃薯叶片叶绿素含量可视化分布图,结果可反映马铃薯在开花期植株上叶片叶绿素动态响应关系,实现了不同叶位马铃薯叶片叶绿素含量无损检测以及分布可视化表达。 展开更多
关键词 光谱分析 作物 叶绿素 垂直分布 马铃薯作物 随机蛙跳算法 高光谱成像
在线阅读 下载PDF
玉米拔节期冠层叶绿素含量多光谱图像检测 被引量:10
2
作者 孙红 赵毅 +4 位作者 张猛 文瑶 李民赞 杨玮 Qin Zhang 《农业工程学报》 EI CAS CSCD 北大核心 2015年第S2期186-192,共7页
为了探索大田玉米冠层叶片叶绿素指标的快速检测方法。采用自主研发的2-CCD多光谱图像成像系统采集了大田玉米拔节期冠层图像,并同步获取了样本叶绿素含量指标SPAD值。对多光谱图像进行了平滑滤波,并基于HSI颜色空间实现了冠层图像的分... 为了探索大田玉米冠层叶片叶绿素指标的快速检测方法。采用自主研发的2-CCD多光谱图像成像系统采集了大田玉米拔节期冠层图像,并同步获取了样本叶绿素含量指标SPAD值。对多光谱图像进行了平滑滤波,并基于HSI颜色空间实现了冠层图像的分割。提取了玉米冠层可见光(blue(B),green(G),red(R);400~700 nm)和近红外(near-infrared,NIR,760~1 000 nm)4个波段平均灰度值并计算了平均灰度值计算比值植被指数(RVI,ratio vegetation index)、归一化植被指数(NDVI,normalized difference vegetation index)、修改型二次土壤调节植被指数(MSAVI2,modified soil-adjusted vegetation index)等8种常见植被指数作为图像检测参数。分析了这12个检测参数与叶绿素指标之间的相关性,讨论了图像检测参数的多种组合,建立了叶绿素指标的多元线性回归分析(MLRA,multiple linear regression analysis)模型。研究结果表明:R、G、B波段的平均灰度值与叶绿素指标成较高负相关,相关系数分别为-0.73,-0.71和-0.71,植被指数中相关性较好的是NDVI、MSAVI2和RVI,相关系数分别为0.83、0.81和-0.81。基于这6个参数组合建立的叶绿素指标估算模型拟合度最好,其建模集决定系数为0.79,验证集决定系数为0.71,研究结果为无损检测玉米拔节期叶绿素含量提供了支持。 展开更多
关键词 叶绿素 图像处理 模型 多光谱图像 玉米拔节期 植被指数
在线阅读 下载PDF
冬小麦苗期叶绿素含量检测光谱学参数寻优 被引量:21
3
作者 毛博慧 李民赞 +3 位作者 孙红 刘豪杰 张俊逸 Zhang Qin 《农业工程学报》 EI CAS CSCD 北大核心 2017年第S1期164-169,共6页
光谱分析技术是作物生长检测的主要手段,为了解决大田漫反射采集所造成的光谱基线漂移和偏移问题,研究采集了冬小麦冠层325~1 075 nm范围反射光谱,采用多元散射校正方法对小麦原始光谱进行预处理。采取遗传算法对光谱特征参数寻优并结... 光谱分析技术是作物生长检测的主要手段,为了解决大田漫反射采集所造成的光谱基线漂移和偏移问题,研究采集了冬小麦冠层325~1 075 nm范围反射光谱,采用多元散射校正方法对小麦原始光谱进行预处理。采取遗传算法对光谱特征参数寻优并结合相关分析结果,选取486、599、699和762 nm波长处反射率值并组合计算了RVI(ratio vegetation index),DVI(difference vegetation index),NDVI(normalized difference vegetation index)和SAVI(soil-adjusted vegetation index)共12个植被指数,分析了各植被指数与叶绿素含量值之间的相关关系,结果显示:DVI和SAVI可抑制苗期土壤背景干扰并对叶绿素含量响应较为敏感,与叶绿素含量相关性最优的参数分别为DVI(762,599)、SAVI(762,599)、DVI(762,699)和SAVI(762,699),与叶绿素含量的相关系数都达到0.6以上。基于相关性最优光谱植被指数DVI(762,699)和SAVI(762,599)利用最小二乘-支持向量回归建立冬小麦叶绿素含量预测模型,建模集决定系数为0.681,验证集决定系数为0.611。该模型可用于无损检测冬小麦苗期叶绿素含量,以期为后续施肥决策提供支持。 展开更多
关键词 叶绿素 光谱学 优化 冬小麦 多元散射校正 植被指数 冠层反射率 遗传算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部