期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于DNGAN的磁共振图像超分辨率重建算法 被引量:4
1
作者 戴朝霞 李锦欣 +3 位作者 张向东 徐旭 梅林 张亮 《计算机科学》 CSCD 北大核心 2022年第7期113-119,共7页
磁共振图像的质量会影响医生对患者身体情况的判断,高清晰度的磁共振图像更有利于医生做出准确的诊断。利用计算机技术对磁共振图像进行超分辨率重建,可以由低分辨率的磁共振图像得到高分辨率的磁共振图像。基于生成对抗网络强大的生成... 磁共振图像的质量会影响医生对患者身体情况的判断,高清晰度的磁共振图像更有利于医生做出准确的诊断。利用计算机技术对磁共振图像进行超分辨率重建,可以由低分辨率的磁共振图像得到高分辨率的磁共振图像。基于生成对抗网络强大的生成能力及其非监督学习特性,文中研究了基于生成对抗网络的磁共振图像超分辨率算法,设计了一个结合残差网络结构及DenseNet结构作为生成网络的网络模型DNGAN。该网络使用WGAN-GP理论作为对抗损失来稳定生成对抗网络的训练。除此之外,使用内容损失函数以及感知损失函数作为网络的损失函数。同时,为了更好地利用磁共振图像丰富的频域信息,将磁共振图像的频域信息作为频域损失函数添加到网络中。为了证明DNGAN模型的有效性,将其磁共振图像超分辨率实验结果与SRGAN以及双三次插值法的磁共振图像超分辨率重建结果进行对比,表明DNGAN模型能够有效地对磁共振图像进行超分辨率重建。 展开更多
关键词 超分辨率重建 生成对抗网络 磁共振图像 卷积神经网络 DenseNet
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部