期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于物理核函数高斯过程回归的月径流预报模型及其应用 被引量:4
1
作者 孙娜 张楠 +3 位作者 张帅 彭甜 周建中 张海荣 《水电能源科学》 北大核心 2023年第4期39-43,共5页
鉴于传统的单一径流预报模型很难描述径流未来变化规律,将自适应变分模态分解(AVMD)与基于组合物理核函数的高斯过程回归(GPR-CK)相结合,构建了AVMD-GPR-CK预报模型,该模型采用AVMD将实测径流分解为多个子序列,对子序列依据其自身特点... 鉴于传统的单一径流预报模型很难描述径流未来变化规律,将自适应变分模态分解(AVMD)与基于组合物理核函数的高斯过程回归(GPR-CK)相结合,构建了AVMD-GPR-CK预报模型,该模型采用AVMD将实测径流分解为多个子序列,对子序列依据其自身特点分别建模,子序列预报结果叠加重构即为最终预报结果。模型应用于金沙江流域向家坝站未来1~12个月的径流预报的结果表明,所有预见期AVMD-GPR-CK模型的确定性系数均大于0.94,平均绝对百分比误差(M_(MAPE))在±17%以内,预见期在10个月以内时,M_(MAPE)在±10%以内;预报精度明显优于常见的BP、GRNN、RBF、RELM模型。 展开更多
关键词 月径流预报 变分模态分解 高斯过程回归 组合核函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部