期刊文献+
共找到123篇文章
< 1 2 7 >
每页显示 20 50 100
Influence of preparation methods on the physicochemical properties and catalytic performance of MnO_x-CeO_2 catalysts for NH_3-SCR at low temperature 被引量:48
1
作者 Xiaojiang Yao Kaili Ma +4 位作者 Weixin Zou Shenggui He Jibin An Fumo Yang Lin Dong 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第1期146-159,共14页
This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature.... This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts. 展开更多
关键词 MnOx‐CeO2 catalyst Preparation method Nitrogen oxides Low‐temperature NH3‐SCR Electron interaction Surface acidity
在线阅读 下载PDF
Doping effect of cations(Zr^(4+),Al^(3+),and Si^(4+)) on MnO_x/CeO_2 nano-rod catalyst for NH_3-SCR reaction at low temperature 被引量:7
2
作者 Xiaojiang Yao Jun Cao +4 位作者 Li Chen Keke Kang Yang Chen Mi Tian Fumo Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第5期733-743,共11页
Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods... Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst. 展开更多
关键词 MnOx/CeO2 nano‐rod catalyst Doping effect Oxygen vacancy Surface acidity Low‐temperature NH3‐SCR reaction
在线阅读 下载PDF
The Impact of the Numbers of Monitoring Stations on the National and Regional Air Quality Assessment in China During 2013-18 被引量:2
3
作者 Hongyan LUO Xiao TANG +8 位作者 Huangjian WU Lei KONG Qian WU Kai CAO Yating SONG Xuechun LUO Yao WANG Jiang ZHU Zifa WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第10期1709-1720,共12页
China national air quality monitoring network has become the core data source for air quality assessment and management in China.However,during network construction,the significant change in numbers of monitoring site... China national air quality monitoring network has become the core data source for air quality assessment and management in China.However,during network construction,the significant change in numbers of monitoring sites with time is easily ignored,which brings uncertainty to air quality assessments.This study aims to analyze the impact of change in numbers of stations on national and regional air quality assessments in China during 2013-18.The results indicate that the change in numbers of stations has different impacts on fine particulate matter(PM_(2.5))and ozone concentration assessments.The increasing number of sites makes the estimated national and regional PM_(2.5) concentration slightly lower by 0.6−2.2μg m^(−3) and 1.4−6.0μg m^(−3) respectively from 2013 to 2018.The main reason is that over time,the monitoring network expands from the urban centers to the suburban areas with low population densities and pollutant emissions.For ozone,the increasing number of stations affects the long-term trends of the estimated concentration,especially the national trends,which changed from a slight upward trend to a downward trend in 2014−15.Besides,the impact of the increasing number of sites on ozone assessment exhibits a seasonal difference at the 0.05 significance level in that the added sites make the estimated concentration higher in winter and lower in summer.These results suggest that the change in numbers of monitoring sites is an important uncertainty factor in national and regional air quality assessments,that needs to be considered in long-term concentration assessment,trend analysis,and trend driving force analysis. 展开更多
关键词 monitoring network newly added sites PM_(2.5) OZONE
在线阅读 下载PDF
Transport Patterns and Potential Sources of Atmospheric Pollution during the ⅩⅩⅣ Olympic Winter Games Period 被引量:2
4
作者 Yuting ZHANG Xiaole PAN +15 位作者 Yu TIAN Hang LIU Xueshun CHEN Baozhu GE Zhe WANG Xiao TANG Shandong LEI Weijie YAO Yuanzhe REN Yongli TIAN Jie LI Pingqing FU Jinyuan XIN Yele SUN Junji CAO Zifa WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第10期1608-1622,I0002-I0004,共18页
The attainment of suitable ambient air quality standards is a matter of great concern for successfully hosting the ⅩⅩⅣ Olympic Winter Games(OWG). Transport patterns and potential sources of pollutants in Zhangjiako... The attainment of suitable ambient air quality standards is a matter of great concern for successfully hosting the ⅩⅩⅣ Olympic Winter Games(OWG). Transport patterns and potential sources of pollutants in Zhangjiakou(ZJK) were investigated using pollutant monitoring datasets and a dispersion model. The PM_(2.5) concentration during February in ZJK has increased slightly(28%) from 2018 to 2021, mostly owing to the shift of main potential source regions of west-central Inner Mongolia and Mongolian areas(2015–18) to the North China Plain and northern Shanxi Province(NCPS) after 2018.Using CO as an indicator, the relative contributions of the different regions to the receptor site(ZJK) were evaluated based on the source-receptor-relationship method(SRR) and an emission inventory. We found that the relative contribution of pollutants from NCPS increased from 33% to 68% during 2019–21. Central Inner Mongolia(CIM) also has an important impact on ZJK under unfavorable weather conditions. This study demonstrated that the effect of pollution control measures in the NCPS and CIM should be strengthened to ensure that the air quality meets the standard during the ⅩⅩⅣ OWG. 展开更多
关键词 Olympic Winter Games FLEXPART transport characteristics atmospheric pollution sources
在线阅读 下载PDF
Promotion effect of Ce and Ta co-doping on the NH_(3)-SCR performance over V_(2)O_(5)/TiO_(2)catalyst 被引量:1
5
作者 Long Liu Xin Shen +4 位作者 Zhihua Lian Chunxi Lin Ying Zhu Wenpo Shan Hong He 《Journal of Environmental Sciences》 2025年第4期332-339,共8页
NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.A... NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.An innovative V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst for NO_(x)removal was prepared in this study.The influences of Ce and Ta in the V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst on the SCR performance and physicochemical properties were investigated.The V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst not only exhibited excellent SCR activity in a wide temperature window,but also presented strong resistance to H_(2)Oand SO_(2)at 275◦C.A series of characterizationmethods was used to study the catalysts,including H2-temperature programmed reduction,X-ray photoelectron spectroscopy,NH_(3)-temperature programmed desorption,etc.It was discovered that a synergistic effect existed between Ce and Ta species.The introduction of Ce and Ta enlarged the specific surface area,increased the amount of acid sites and the ratio of Ce^(3+),(V^(3+)+V^(4+))and Oα,and strengthened the redox capability which were related to synergistic effect between Ce and Ta species,significantly improving the NH_(3)-SCR activity. 展开更多
关键词 NH_(3)-SCR Vanadia-based catalysts Synergistic effect CO-DOPING Low temperature
原文传递
Pilot-scale testing on catalytic hydrolysis of carbonyl sulfur combined with absorption-oxidation of H_(2)S for blast furnace gas purification
6
作者 Yuting Lin Yuran Li +6 位作者 Bin Wang Jinglei Tian Hongqiang Liu Yiren Li Zhicheng Xu Qiang Cao Tingyu Zhu 《Journal of Environmental Sciences》 2025年第5期360-372,共13页
About 70%of the flue gas in the iron-steel industry has achieved multi-pollutant ultra-low emissions in China until 2023,and then the blast furnace gas purification has become the control step and bottleneck.Our resea... About 70%of the flue gas in the iron-steel industry has achieved multi-pollutant ultra-low emissions in China until 2023,and then the blast furnace gas purification has become the control step and bottleneck.Our research group has designed and constructed the world’s first blast furnace gas desulfurization pilot plant with the scale of 2000 Nm^(3)/h in October 2021.The pilot plant is a two-step combined desulfurization device including catalytic hydrolysis of carbonyl sulfur(COS)and absorption-oxidation of H_(2)S,continuously running for 120 days.In the hydrolysis system,one reason for catalyst deactivation has been verified from the sulfur deposition.HCN in blast furnace gas can be hydrolyzed on the hydrolysis catalyst to produce the nitrogen deposition,which is one of the reasons for catalyst deactivation and has never been found in previous studies.The deposition forms of S and N elements are determined,S element forms elemental sulfur and sulfate,while N element forms-NH_(2)and NH_(4)^(+).In the absorption-oxidation system,the O_(2)loading and the residence time have been optimized to control the oxidation of HS^(−)to produce elemental sulfur instead of by-product S_(2)O_(3)^(2−).The balance and distribution of S and N elements have been calculated for thewholemulti-phase system,approximately 84.4%of the sulfur is converted to solid sulfur product,about 1.3%of the sulfur and 19.2%of N element are deposited on the hydrolysis catalyst.The pilot plant provides technical support formulti-pollutant control of blast furnace. 展开更多
关键词 Blast furnace gas Carbonyl sulfur Hydrogen sulfide Hydrogen cyanide Hydrolysis and oxidation Activated carbon
原文传递
Ti^(3+)/Ti^(4+)and Co^(2+)/Co^(3+)redox couples in Ce-doped Co-Ce/TiO2 for enhancing photothermocatalytic toluene oxidation
7
作者 Guanghui Li Xiaolan Li +3 位作者 Xinhui Hao Qiang Li Meng Zhang Hongpeng Jia 《Journal of Environmental Sciences》 2025年第3期164-176,共13页
Cerium and cobalt loaded Co-Ce/TiO_(2)catalyst prepared by impregnation method was investigated for photothermal catalytic toluene oxidation.Based on catalyst characterizations(XPS,EPR and H2-TPR),redox cycle between ... Cerium and cobalt loaded Co-Ce/TiO_(2)catalyst prepared by impregnation method was investigated for photothermal catalytic toluene oxidation.Based on catalyst characterizations(XPS,EPR and H2-TPR),redox cycle between Co and TiO_(2)(Co^(2+)+Ti^(4+)↔Co^(3+)+Ti^(3+))results in the formation of Co^(3+),Ti^(3+)and oxygen vacancies,which play important roles in toluene catalytic oxidation reaction.The introduction of Ce brings in the dual redox cycles(Co^(2+)+Ti^(4+)↔Co^(3+)+Ti^(3+),Co^(2+)+Ce4+↔Co^(3+)+Ce3+),further promoting the elevation of reaction sites amount.Under full spectrum irradiation with light intensity of 580mW/cm^(2),Co-Ce/TiO_(2)catalyst achieved 96%of toluene conversion and 73%of CO_(2)yield,obviously higher than Co/P25 and Co/TiO_(2).Co-Ce/TiO_(2)efficiently maintains 10-hour stability test under water vapor conditions and exhibits better photothermal catalytic performance than counterparts under different wavelengths illumination.Photothermal catalytic reaction displays improved activities compared with thermal catalysis,which is attributed to the promotional effect of light including photocatalysis and light activation of reactive oxygen species. 展开更多
关键词 Photothermal catalysis Redox cycle Oxygen vacancy VOCS Titanium dioxide
原文传递
Development of an automatic measurement system using atmospheric pressure photoionization ultrahigh-resolution mass spectrometry and application for on-line analysis of particulate matter
8
作者 Yayuan Dong Ranran Liu +4 位作者 Ling Xie Xiaole Pan Yele Sun Lin Wu ZifaWang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第4期516-530,共15页
On-line chemical characterization of atmospheric particulate matter(PM)with soft ionization technique and ultrahigh-resolution Mass Spectrometry(UHRMS)provides molecular information of organic constituents in real tim... On-line chemical characterization of atmospheric particulate matter(PM)with soft ionization technique and ultrahigh-resolution Mass Spectrometry(UHRMS)provides molecular information of organic constituents in real time.Here we describe the development and application of an automatic measurement system that incorporates PM_(2.5)sampling,thermal desorption,atmospheric pressure photoionization,and UHRMS analysis.Molecular formulas of detected organic compounds were deducted from the accurate(±10 ppm)molecular weights obtained at a mass resolution of 100,000,allowing the identification of small organic compounds in PM_(2.5).Detection efficiencies of 28 standard compounds were determined and we found a high sensitivity and selectivity towards organic amines with limits of detection below 10 pg.As a proof of principle,PM_(2.5)samples collected off-line in winter in the urban area of Beijing were analyzed using the Ionization Module and HRMS of the system.The automatic system was then applied to conduct on-line measurements during the summer time at a time resolution of 2 hr.The detected organic compounds comprised mainly CHON and CHN compounds below 350 m/z.Pronounced seasonal variations in elemental composition were observed with shorter carbon backbones and higher O/C ratios in summer than that in winter.This result is consistent with stronger photochemical reactions and thus a higher oxidation state of organics in summer.Diurnal variation in signal intensity of each formula provides crucial information to reveal its source and formation pathway.In summary,the automatic measurement system serves as an important tool for the on-line characterization and identification of organic species in PM_(2.5). 展开更多
关键词 PM_(2.5) Chemical composition On-line measurement technique High resolution mass spectrometry
原文传递
Atmospheric oxidation capacity and O_(3) formation in a coastal city of southeast China:Results from simulation based on four-season observation
9
作者 Gaojie Chen Taotao Liu +9 位作者 Jinsheng Chen Lingling Xu Baoye Hu Chen Yang Xiaolong Fan Mengren Li Youwei Hong Xiaoting Ji Jinfang Chen Fuwang Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第2期68-80,共13页
The pollution of atmospheric ozone in China shows an obvious upward trend in the past decade.However,the studies on the atmospheric oxidation capacity and O_(3)formation in four seasons in the southeastern coastal reg... The pollution of atmospheric ozone in China shows an obvious upward trend in the past decade.However,the studies on the atmospheric oxidation capacity and O_(3)formation in four seasons in the southeastern coastal region of China with the rapid urbanization remain limited.Here,a four-season field observation was carried out in a coastal city of southeast China,using an observation-based model combining with the Master Chemical Mechanism,to explore the atmospheric oxidation capacity(AOC),radical chemistry,O_(3)formation pathways and sensitivity.The results showed that the average net O_(3)production rate(14.55 ppbv/hr)in summer was the strongest,but the average O_(3)concentrations in autumn was higher.The AOC and ROx levels presented an obvious seasonal pattern with the maximum value in summer,while the OH reactivity in winter was the highest with an average value of 22.75 sec^(-1).The OH reactivity was dominated by oxygenated VOCs(OVOCs)(30.6%-42.8%),CO(23.2%-26.8%),NO_(2)(13.6%-22.0%),and alkenes(8.4%-12.5%)in different seasons.HONO photolysis dominated OH primary source on daytime in winter,while in other seasons,HONO photolysis in the morning and ozone photolysis in the afternoon contributed mostly.Sensitivity analysis indicated that O_(3)production was controlled by VOCs in spring,autumn and winter,but a VOC-limited and NOx-limited regime in summer,and alkene and aromatic species were the major controlling factors to O_(3)formation.Overall,the study characterized the atmospheric oxidation capacity and elucidated the controlling factors for O_(3)production in the coastal area with the rapid urbanization in China. 展开更多
关键词 Atmospheric oxidation capacity Radical chemistry Ozone production Sensitivity analysis
原文传递
Investigating the Transport Mechanism of PM2.5 Pollution during January 2014 in Wuhan, Central China 被引量:14
10
作者 Miaomiao LU Xiao TANG +9 位作者 Zifa WANG Lin WU Xueshun CHEN Shengwen LIANG Hui ZHOU Huangjian WU Ke HU Longjiao SHEN Jia YU Jiang ZHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第11期1217-1234,I0012-I0017,共19页
Severe haze pollution that occurred in January 2014 in Wuhan was investigated. The factors leading to Wuhan’s PM2.5 pollution and the characteristics and formation mechanism were found to be significantly different f... Severe haze pollution that occurred in January 2014 in Wuhan was investigated. The factors leading to Wuhan’s PM2.5 pollution and the characteristics and formation mechanism were found to be significantly different from other megacities, like Beijing. Both the growth rates and decline rates of PM2.5 concentrations in Wuhan were lower than those in Beijing, but the monthly PM2.5 value was approximately twice that in Beijing. Furthermore, the sharp increases of PM2.5 concentrations were often accompanied by strong winds. A high-precision modeling system with an online source-tagged method was established to explore the formation mechanism of five haze episodes. The long-range transport of the polluted air masses from the North China Plain (NCP) was the main factor leading to the sharp increases of PM2.5 concentrations in Wuhan, which contributed 53.4% of the monthly PM2.5 concentrations and 38.5% of polluted days. Furthermore, the change in meteorological conditions such as weakened winds and stable weather conditions led to the accumulation of air pollutants in Wuhan after the long-range transport. The contribution from Wuhan and surrounding cities to the PM2.5 concentrations was determined to be 67.4% during this period. Under the complex regional transport of pollutants from surrounding cities, the NCP, East China, and South China, the five episodes resulted in 30 haze days in Wuhan. The findings reveal important roles played by transregional and intercity transport in haze formation in Wuhan. 展开更多
关键词 HAZE POLLUTION regional transport WUHAN NORTH China PLAIN source-tagged method
在线阅读 下载PDF
Support effect of the supported ceria-based catalysts during NH_3-SCR reaction 被引量:19
11
作者 Xiaojiang Yao Li Chen +3 位作者 Tingting Kong Shimin Ding Qiong Luo Fumo Yang 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第8期1423-1430,共8页
To investigate how the physicochemical properties and NH3‐selective catalytic reduction(NH3‐SCR)performance of supported ceria‐based catalysts are influenced as a function of support type,a series of CeO2/SiO2,CeO2... To investigate how the physicochemical properties and NH3‐selective catalytic reduction(NH3‐SCR)performance of supported ceria‐based catalysts are influenced as a function of support type,a series of CeO2/SiO2,CeO2/γ‐Al2O3,CeO2/ZrO2,and CeO2/TiO2catalysts were prepared.The physicochemical properties were probed by means of X‐ray diffraction,Raman spectroscopy,Brunauer‐Emmett‐Teller surface area measurements,X‐ray photoelectron spectroscopy,H2‐temperature programmed reduction,and NH3‐temperature programmed desorption.Furthermore,the supported ceria‐based catalysts'catalytic performance and H2O+SO2tolerance were evaluated by the NH3‐SCR model reaction.The results indicate that out of the supported ceria‐based catalysts studied,the CeO2/γ‐Al2O3catalyst exhibits the highest catalytic activity as a result of having a high relative Ce3+/Ce4+ratio,optimum reduction behavior,and the largest total acid site concentration.Finally,the CeO2/γ‐Al2O3catalyst also presents excellent H2O+SO2tolerance during the NH3‐SCR process. 展开更多
关键词 Support effect Supported ceria‐based catalyst Reduction behavior Surface acidity Ammonia‐selective catalytic reduction
在线阅读 下载PDF
Vertical Evolution of Boundary Layer Volatile Organic Compounds in Summer over the North China Plain and the Differences with Winter 被引量:5
12
作者 Shuang WU Guiqian TANG +5 位作者 Yinghong WANG Rong MAI Dan YAO Yanyu KANG Qinglu WANG Yuesi WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第7期1165-1176,共12页
The vertical observation of volatile organic compounds(VOCs)is an important means to clarify the mechanisms of ozone formation.To explore the vertical evolution of VOCs in summer,a field campaign using a tethered ball... The vertical observation of volatile organic compounds(VOCs)is an important means to clarify the mechanisms of ozone formation.To explore the vertical evolution of VOCs in summer,a field campaign using a tethered balloon during summer photochemical pollution was conducted in Shijiazhuang from 8 June to 3 July 2019.A total of 192 samples were collected,23 vertical profiles were obtained,and the concentrations of 87 VOCs were measured.The range of the total VOC concentration was 41-48 ppbv below 600 m.It then slightly increased above 600 m,and rose to 58±52 ppbv at 1000 m.The proportion of alkanes increased with height,while the proportions of alkenes,halohydrocarbons and acetylene decreased.The proportion of aromatics remained almost unchanged.A comparison with the results of a winter field campaign during 8-16 January 2019 showed that the concentrations of all VOCs in winter except for halohydrocarbons were more than twice those in summer.Alkanes accounted for the same proportion in winter and summer.Alkenes,aromatics,and acetylene accounted for higher proportions in winter,while halohydrocarbons accounted for a higher proportion in summer.There were five VOC sources in the vertical direction.The proportions of gasoline vehicular emissions+industrial sources and coal burning were higher in winter.The proportions of biogenic sources+long-range transport,solvent usage,and diesel vehicular emissions were higher in summer.From the surface to 1000 m,the proportion of gasoline vehicular emissions+industrial sources gradually increased. 展开更多
关键词 volatile organic compounds vertical profile planetary boundary layer source apportionment
在线阅读 下载PDF
Ground-Based Hyperspectral Stereoscopic Remote Sensing Network: A Promising Strategy to Learn Coordinated Control of O_(3) and PM_(2.5) over China 被引量:7
13
作者 Cheng Liu Chengzhi Xing +15 位作者 Qihou Hu Qihua Li Haoran Liu Qianqian Hong Wei Tan Xiangguang Ji Hua Lin Chuan Lu Jinan Lin Hanyang Liu Shaocong Wei Jian Chen Kunpeng Yang Shuntian Wang Ting Liu Yujia Chen 《Engineering》 SCIE EI CAS 2022年第12期71-83,共13页
With the coming of the“14th Five-Year Plan,”the coordinated control of particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM_(2.5))and O_(3) has become a major issue of air pollution prevention a... With the coming of the“14th Five-Year Plan,”the coordinated control of particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM_(2.5))and O_(3) has become a major issue of air pollution prevention and control in China.The stereoscopic monitoring of regional PM_(2.5) and O_(3) and their precursors is crucial to achieve coordinated control.However,current monitoring networks are currently inadequate for monitoring the vertical profiles of both PM_(2.5) and O_(3) simultaneously and support air quality control.The University of Science and Technology of China(USTC)has established a nationwide ground-based hyperspectral stereoscopic remote sensing network based on multi-axis differential optical absorption spectroscopy(MAX-DOAS)since 2015.This monitoring network provides a significant opportunity for the regional coordinated control of PM_(2.5) and O_(3) in China.One-year vertical profiles of aerosol,NO_(2) and HCHO monitored from four MAX-DOAS stations installed in four megacities(Beijing,Shanghai,Shenzhen,and Chongqing)were used to characterize their vertical distribution differences in four key regions,Jing–Jin–Ji(JJJ),Yangtze River Delta(YRD),Pearl River Delta(PRD),and Sichuan Basin(SB),respectively.The normalized and yearly averaged aerosol vertical profiles below 400 m in JJJ and PRD exhibit a box shape and a Gaussian shape,respectively,and both show exponential shapes in YRD and SB.The NO_(2) vertical profiles in four regions all exhibit exponential shapes because of vehicle emissions.The shape of the HCHO vertical profile in JJJ and PRD was Gaussian,whereas an exponential shape was shown in YRD and SB.Moreover,a regional transport event occurred at an altitude of 600–1000 m was monitored in the southwest–northeast pathway of the North China Plain(NCP)by five MAX-DOAS stations(Shijiazhuang(SJZ),Wangdu(WD),Nancheng(NC),Chinese Academy of Meteorological Sciences(CAMS),and University of Chinese Academy of Sciences(UCAS))belonging to the above network.The aerosol optical depths(AOD)in these five stations decreased in the order of SJZ>WD>NC>CAMS>UCAS.The short-distance regional transport of NO2 in the 700–900 m layer was monitored between WD and NC.As an important precursor of secondary aerosol,the peak of NO_(2) air mass in WD and NC all occurred 1 h earlier than that of aerosol.This was also observed for the short-distance regional transport of HCHO in the 700–900 m layer between NC and CAMS,which potentially affected the O_(3) concentration in Beijing.Finally,CAMS was selected as a typical site to determine the O_(3)–NO_(x)–volatile organic compounds(VOCs)sensitivities in vertical space.We found the production of O_(3) changed from predominantly VOCs-limited conditions to mainly mixed VOCs–NO_(x)-limited condition from the 0–100 m layer to the 200–300 m layer.In addition,the downward transport of O_(3) could contribute to the increase of ground surface O_(3) concentration.This ground-based hyperspectral stereoscopic remote sensing network provide a promising strategy to support management of PM_(2.5) and O_(3) and their precursors and conduct attribution of sources. 展开更多
关键词 MAX-DOAS Stereoscopic monitoring Regional transport Ozone production Control strategy
在线阅读 下载PDF
Nocturnal Low-levelWinds and Their Impacts on Particulate Matter over the Beijing Area 被引量:3
14
作者 Yong CHEN Junling AN +5 位作者 Yele SUN Xiquan WANG Yu QU Jingwei ZHANG Zifa WANG Jing DUAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第12期1455-1468,共14页
Three-month wind profiles, 260 m PM_1 concentrations [i.e., particulate matter(PM) with an aerodynamic diameter ≤1μm], and carrier-to-noise ratio data at two Beijing sites 55 km apart(urban and suburban) were collec... Three-month wind profiles, 260 m PM_1 concentrations [i.e., particulate matter(PM) with an aerodynamic diameter ≤1μm], and carrier-to-noise ratio data at two Beijing sites 55 km apart(urban and suburban) were collected to analyze the characteristics of low-level nocturnal wind and PM in autumn and winter. Three mountain-plain wind events with wind shear were selected for analysis. The measurements indicated that the maximum wind speeds of the northerly weak low-level jet(LLJ) below 320 m at the suburban site were weaker than those at the urban site, and the LLJ heights and depths at the suburban site were lower than those at the urban site. The nocturnal 140 m mean vertical velocities and the variations in vertical velocity at the urban site were larger than those at the suburban site. A nocturnal breeze with a weak LLJ of ~3 m s^(-1) noticeably offset nocturnal PM transport due to southerly flow and convergence within the northern urban area of Beijing. Characteristics of the nocturnal LLJ, such as start-up time, structure, intensity, and duration, were important factors in determining the decrease in the nocturnal horizontal range and site-based low-level variations in PM. 展开更多
关键词 WEAK low-level jet WIND direction SHEAR WIND lidar low-level PM1
在线阅读 下载PDF
Observation of nocturnal low-level wind shear and particulate matter in urban Beijing using a Doppler wind lidar 被引量:6
15
作者 CHEN Yong AN Jun-Ling +4 位作者 LIN Jian SUN Ye-Le WANG Xi-Quan WANG Zi-Fa DUAN Jing 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第6期411-417,共7页
A field experiment of nocturnal mountain wind and corresponding particulate matter (PM) evolution under weak synoptic forcing at five sites within urban Beijing was conducted using a moving Doppler wind lidar and a ... A field experiment of nocturnal mountain wind and corresponding particulate matter (PM) evolution under weak synoptic forcing at five sites within urban Beijing was conducted using a moving Doppler wind lidar and a fixed tower. Clear wind shear and zero-horizontal-wind zones at 40-320 m above the ground with a delay of 1.5 h were found at two sites between 20 km from north to south urban Beijing. The wind speed and height of the low-level jet at the north urban Beijing site were greater than those at the east urban Beijing site. The average horizontal distribution of low-level PM at 240 m was similar to the ground-level PM at night. The PM2.s (aerodynamic diameter ≤2.5 μm) accumulation center showed no abrupt changes with a shift in wind direction until the northerly wind jet arrived. 展开更多
关键词 Mountain-plain wind windshear wind lidar
在线阅读 下载PDF
Evaluation and Evolution of MAX-DOAS-observed Vertical NO_(2) Profiles in Urban Beijing 被引量:3
16
作者 Yanyu KANG Guiqian TANG +4 位作者 Qihua LI Baoxian LIU Jianfeng CAO Qihou HU Yuesi WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第7期1188-1196,共9页
Multiaxis differential absorption spectroscopy(MAX-DOAS)is a newly developed advanced vertical profile detection method,but the vertical nitrogen dioxide(NO_(2))profiles measured by MAX-DOAS have not yet been fully ve... Multiaxis differential absorption spectroscopy(MAX-DOAS)is a newly developed advanced vertical profile detection method,but the vertical nitrogen dioxide(NO_(2))profiles measured by MAX-DOAS have not yet been fully verified.In this study,we perform MAX-DOAS and tower gradient observations to simultaneously acquire tropospheric NO_(2)observations in the Beijing urban area from 1 April to 31 May 2019.The average values of the tropospheric NO_(2)vertical column densities measured by MAX-DOAS and the tropospheric monitoring instrument are 15.8×1015 and 12.4×1015 molecules cm−2,respectively,and the correlation coefficient R reaches 0.87.The MAX-DOAS measurements are highly consistent with the tower-based in situ measurements,and the correlation coefficients R from the ground to the upper air are 0.89(60 m),0.87(160 m),and 0.76(280 m).MAX-DOAS accurately measures the trend of NO_(2)vertical profile changes,although a large underestimation occurs by a factor of two.By analyzing the NO_(2)vertical profile,the NO_(2)concentration reveals an exponential decrease with height.The NO_(2)vertical profile also coincides with the evolution of the boundary layer height.The study shows that the NO_(2)over Beijing mainly originates from local sources and occurs in the boundary layer,and its vertical evolution pattern has an important guiding significance to better understand nitrate production and ozone pollution. 展开更多
关键词 MAX-DOAS NO_(2) tower-based in situ observation TROPOMI validation VERTICAL
在线阅读 下载PDF
Evolution and meteorological causes of fine particulate explosive growth events in Beijing, China, from 2013 to 2017 被引量:2
17
作者 SHI Shuzhen LIU Zirui +3 位作者 XU Zhongjun YANG Shuanghong LIU Jingda WANG Yuesi 《Atmospheric and Oceanic Science Letters》 CSCD 2020年第1期55-62,共8页
Based on online observations of fine particulate matter(PM2.5) for five consecutive years from January 2013 to December 2017 in Beijing, combined with simultaneous measurement of gaseous precursors and meteorological ... Based on online observations of fine particulate matter(PM2.5) for five consecutive years from January 2013 to December 2017 in Beijing, combined with simultaneous measurement of gaseous precursors and meteorological parameters, the evolution and meteorological causes of fineparticle explosive growth(FPEG) events were analyzed. During the 5-year observation period,132 FPEG events were observed and these events were further divided into three types(3-, 6-, and 9-h events) according to their evolution duration. The majority of FPEG events were observed in winter under the conditions of higher gas precursor concentrations and unfavorable meteorological conditions. The average concentration of PM2.5 during winter FPEG events changed little from 2013 to 2016, whereas it decreased significantly in 2017, in accordance with the similar variation of gaseous species(SO2, NO2, and CO). In addition, the higher wind speeds and lowest relative humidity observed in 2017 were also conducive to the decrease in PM2.5. The evolutions of FPEG events and normal haze episodes were analyzed, revealing that the rate of increase in NO2 was much greater than that of SO2, suggesting more of a contribution from mobile sources than stationary sources. The polar Plot results suggest that the transportation from the southeast area of Beijing plays a major role in the formation of 3-h events, whereas local emissions is the main contributory factor for 9-h events and normal haze episodes. However, further quantitative analysis regarding the contributions of these factors is still needed. 展开更多
关键词 Fine-particle explosive growth events PM2.5 gaseous precursor meteorological factors BEIJING
在线阅读 下载PDF
Coordinated Control of Fine-Particle and Ozone Pollution by the Substantial Reduction of Nitrogen Oxides 被引量:2
18
作者 Biwu Chu Yan Ding +4 位作者 Xiang Gao Junhua Li Tingyu Zhu Yunbo Yu Hong He 《Engineering》 SCIE EI CAS 2022年第8期13-16,共4页
1.Introduction In recent years,the air quality in China has improved significantly.In many cities,however,the concentration of fine particulate matter(PM_(2.5))remains higher than the secondary-level national ambient ... 1.Introduction In recent years,the air quality in China has improved significantly.In many cities,however,the concentration of fine particulate matter(PM_(2.5))remains higher than the secondary-level national ambient air quality standard(NAAQS level-2,35μg·m^(-3),GB3095-2012[1])and much higher than the first-level NAAQS(15μg·m^(-3),GB3095-2012[1])and the World Health Organization(WHO)air quality guidelines(5μg·m^(-3)). 展开更多
关键词 POLLUTION OZONE AMBIENT
在线阅读 下载PDF
Investigating the Changes in Air Pollutant Emissions over the Beijing-Tianjin-Hebei Region in February from 2014 to 2019 through an Inverse Emission Method 被引量:1
19
作者 Xuechun LUO Xiao TANG +8 位作者 Haoyue WANG Lei KONG Huangjian WU Weiguo WANG Yating SONG Hongyan LUO Yao WANG Jiang ZHU Zifa WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第4期601-618,共18页
In recent years,China has implemented several measures to improve air quality.The Beijing-Tianjin-Hebei(BTH)region is one area that has suffered from the most serious air pollution in China and has undergone huge chan... In recent years,China has implemented several measures to improve air quality.The Beijing-Tianjin-Hebei(BTH)region is one area that has suffered from the most serious air pollution in China and has undergone huge changes in air quality in the past few years.How to scientifically assess these change processes remain the key issue in further improving the air quality over this region in the future.To evaluate the changes in major air pollutant emissions over this region,this paper employs ensemble Kalman filtering(EnKF)for integrating the national ground monitoring pollutant observation data and the Nested Air Quality Prediction Modeling System(NAQPMS)simulation data to inversely estimate the emission rates of SO_(2),NOX,CO,and primary PM_(2.5)over BTH region in February from 2014 to 2019.The results show that SO_(2),NOX,CO,and primary PM_(2.5)emissions in the BTH region decreased in February from 2014 to 2019 by 83%,37%,41%,and 42%,while decreases in Beijing during this period were 86%,67%,59%,and 65%,respectively.Compared with the prior emission inventory,the inversion emission inventory reduces the uncertainty of multi-pollutant simulation in the BTH region,with simulated root mean square errors of the monthly average concentrations of SO_(2),NOX,PM_(2.5),and CO reduced by 41%,30%,31%,and 22%,respectively.The average uncertainties of SO_(2),NOX,PM_(2.5),and CO inversion emissions in2014-19 are±14.03%yr^(-1),±28.91%yr^(-1),±126.15%yr^(-1),and±43.58%yr^(-1).Compared with the uncertainty of MEIC emission,the uncertainties of all species changed by+2%yr^(-1),-2%yr^(-1),-26%yr^(-1),and-4%yr^(-1),respectively.The spatial distribution results illustrate that air pollutant emissions are mainly distributed over the eastern and southern BTH regions.The spatial gap between the inversion emissions and MEIC emissions was further closed in 2019 compared to 2014.The results of this paper can provide a new reference for assessing changes in air pollution emissions over the BTH region in recent years and validating a bottom-up emission inventory. 展开更多
关键词 emission inversion emission trend air pollutants BEIJING-TIANJIN-HEBEI
在线阅读 下载PDF
Exploration of the active phase of the hydrotalcite-derived cobalt catalyst for HCHO oxidation 被引量:1
20
作者 Mengya Lin Xiaolin Yu +2 位作者 Xueqin Yang Xiuyun Ma Maofa Ge 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第5期703-712,共10页
A series of Co-based oxide catalysts were prepared by calcining hydrotalcite precursors in different atmospheres and studied for HCHO catalytic oxidation. The N2-calcined catalyst exhibits enhanced HCHO oxidation and ... A series of Co-based oxide catalysts were prepared by calcining hydrotalcite precursors in different atmospheres and studied for HCHO catalytic oxidation. The N2-calcined catalyst exhibits enhanced HCHO oxidation and superior stability. On the basis of H2-TPR, X-ray photoelectron spectroscopy, and Raman characterizations, this can be ascribed to better redox ability, octahedrally coordinated Co2+ ions derived from the CoO phase, and other surface oxygen species, such as O2– or O–. The extra octahedrally coordinated Co2+ ions may reside in a more open framework site than the inactive tetrahedrally coordinated Co2+ ions. This species of Co2+ can easily make contact with oxygen and oxidize. The surface oxygen species, along with the octahedrally coordinated Co2+ ions, and a part of the Co3+ species constitute the Co2+-oxygen species-Co3+ sites, which enhance the catalytic activities. According to DRIFTS, Co2+-oxygen species-Co3+ makes oxidation of HCHO and conversion of DOM to formate easier. 展开更多
关键词 HCHO Hydrotalcite derivate Active phase Cobalt oxide
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部