Formulation and numerical evaluation of a novel twice-interpolation finite element method (TFEM) is presented for solid mechanics problems. In this method, the trial function for Galerkin weak form is constructed th...Formulation and numerical evaluation of a novel twice-interpolation finite element method (TFEM) is presented for solid mechanics problems. In this method, the trial function for Galerkin weak form is constructed through two stages of consecutive interpolation. The primary interpolation follows exactly the same procedure of standard FEM and is further reproduced according to both nodal values and averaged nodal gradients obtained from primary interpolation. The trial functions thus constructed have continuous nodal gradients and contain higher order polynomial without increasing total freedoms. Several benchmark examples and a real dam problem are used to examine the TFEM in terms of accuracy and convergence. Compared with standard FEM, TFEM can achieve significantly better accuracy and higher convergence rate, and the continuous nodal stress can be obtained without any smoothing operation. It is also found that TFEM is insensitive to the quality of the elemental mesh. In addition, the present TFEM can treat the incompressible material without any modification.展开更多
A novel numerical method is explored and named as mesh-free poly-cell Galerkin method. An improved moving least-square (MLS) scheme is presented, which can avoid the matrix inversion in standard MLS and can be used ...A novel numerical method is explored and named as mesh-free poly-cell Galerkin method. An improved moving least-square (MLS) scheme is presented, which can avoid the matrix inversion in standard MLS and can be used to construct shape functions possessing delta Kronecher property. A new type of local support is introduced to ensure the alignment of integral domains with the cells of the back-ground mesh, which will reduce the difficult in integration. An intensive numerical study is conducted to test the accuracy of the present method. It is observed that solutions with good accuracy can be obtained with the present method.展开更多
Formulation and numerical evaluation of a novel four-node quadrilateral element with continuous nodal stress(Q4-CNS)are presented.Q4-CNS can be regarded as an improved hybrid FE-meshless four-node quadrilateral elem...Formulation and numerical evaluation of a novel four-node quadrilateral element with continuous nodal stress(Q4-CNS)are presented.Q4-CNS can be regarded as an improved hybrid FE-meshless four-node quadrilateral element(FE-LSPIM QUAD4), which is a hybrid FE-meshless method.Derivatives of Q4-CNS are continuous at nodes, so the continuous nodal stress can be obtained without any smoothing operation.It is found that,compared with the standard four-node quadrilateral element(QUAD4),Q4- CNS can achieve significantly better accuracy and higher convergence rate.It is also found that Q4-CNS exhibits high tolerance to mesh distortion.Moreover,since derivatives of Q4-CNS shape functions are continuous at nodes,Q4-CNS is potentially useful for the problem of bending plate and shell models.展开更多
A novel polygonal finite element method (PFEM) based on partition of unity is proposed, termed the virtual node method (VNM). To test the performance of the present method, numerical examples are given for solid m...A novel polygonal finite element method (PFEM) based on partition of unity is proposed, termed the virtual node method (VNM). To test the performance of the present method, numerical examples are given for solid mechanics problems. With a polynomial form, the VNM achieves better results than those of traditional PFEMs, including the Wachspress method and the mean value method in standard patch tests. Compared with the standard triangular FEM, the VNM can achieve better accuracy. With the ability to construct shape functions on polygonal elements, the VNM provides greater flexibility in mesh generation. Therefore, several fracture problems are studied to demonstrate the potential implementation. With the advantage of the VNM, the convenient refinement and remeshing strategy are applied.展开更多
基金supported by the National Natural Science Foundation of China(50474053,50475134 and 50675081)the 863 project (2007AA042142)
文摘Formulation and numerical evaluation of a novel twice-interpolation finite element method (TFEM) is presented for solid mechanics problems. In this method, the trial function for Galerkin weak form is constructed through two stages of consecutive interpolation. The primary interpolation follows exactly the same procedure of standard FEM and is further reproduced according to both nodal values and averaged nodal gradients obtained from primary interpolation. The trial functions thus constructed have continuous nodal gradients and contain higher order polynomial without increasing total freedoms. Several benchmark examples and a real dam problem are used to examine the TFEM in terms of accuracy and convergence. Compared with standard FEM, TFEM can achieve significantly better accuracy and higher convergence rate, and the continuous nodal stress can be obtained without any smoothing operation. It is also found that TFEM is insensitive to the quality of the elemental mesh. In addition, the present TFEM can treat the incompressible material without any modification.
文摘A novel numerical method is explored and named as mesh-free poly-cell Galerkin method. An improved moving least-square (MLS) scheme is presented, which can avoid the matrix inversion in standard MLS and can be used to construct shape functions possessing delta Kronecher property. A new type of local support is introduced to ensure the alignment of integral domains with the cells of the back-ground mesh, which will reduce the difficult in integration. An intensive numerical study is conducted to test the accuracy of the present method. It is observed that solutions with good accuracy can be obtained with the present method.
文摘Formulation and numerical evaluation of a novel four-node quadrilateral element with continuous nodal stress(Q4-CNS)are presented.Q4-CNS can be regarded as an improved hybrid FE-meshless four-node quadrilateral element(FE-LSPIM QUAD4), which is a hybrid FE-meshless method.Derivatives of Q4-CNS are continuous at nodes, so the continuous nodal stress can be obtained without any smoothing operation.It is found that,compared with the standard four-node quadrilateral element(QUAD4),Q4- CNS can achieve significantly better accuracy and higher convergence rate.It is also found that Q4-CNS exhibits high tolerance to mesh distortion.Moreover,since derivatives of Q4-CNS shape functions are continuous at nodes,Q4-CNS is potentially useful for the problem of bending plate and shell models.
文摘A novel polygonal finite element method (PFEM) based on partition of unity is proposed, termed the virtual node method (VNM). To test the performance of the present method, numerical examples are given for solid mechanics problems. With a polynomial form, the VNM achieves better results than those of traditional PFEMs, including the Wachspress method and the mean value method in standard patch tests. Compared with the standard triangular FEM, the VNM can achieve better accuracy. With the ability to construct shape functions on polygonal elements, the VNM provides greater flexibility in mesh generation. Therefore, several fracture problems are studied to demonstrate the potential implementation. With the advantage of the VNM, the convenient refinement and remeshing strategy are applied.