期刊文献+
共找到561篇文章
< 1 2 29 >
每页显示 20 50 100
Current State of Numerical Simulations and Testing for the Blast and Impact Protection of the Build Civil Engineering Infrastructure
1
作者 GEBBEKEN Norbert 《Transactions of Tianjin University》 EI CAS 2006年第B09期1-7,共7页
The identification of the critical infrastructure has shown that the build civil engineering infrastructure is almost involved everywhere, even with the IT-infrastructure. Therefore, the passive safety of structures i... The identification of the critical infrastructure has shown that the build civil engineering infrastructure is almost involved everywhere, even with the IT-infrastructure. Therefore, the passive safety of structures is demanded. Security associations have analysed that most assaults came along with explosion and impact scenarios, which amount in 80% of assaults. Consequently, these are the extraordinary loads the structures have to be planned and designed for. To carry out such an engineering job, the engineer has to be educated in multiple disciplines as physics, material science , continuum mechanics, numerical mechanics, testing, structural engineering and related specific fields as wave propagation etc. In this paper we will concentrate on the subjects of numerical simulation and testing. 展开更多
关键词 BLAST IMPACT numerical simulation testing passive structural safety
在线阅读 下载PDF
Integrating ACAD with GIS for Civil Engineering Applications
2
作者 Asma Thamir Ibraheem Haidar Alaa Hassan Mustefa Husam Abd Al-Husain 《Journal of Software Engineering and Applications》 2012年第3期138-146,共9页
GIS is a computerized database management system that provides geographic access (capture, storage, retrieval, analysis and display) to spatial data. Civil Engineering projects involve the management, analysis and int... GIS is a computerized database management system that provides geographic access (capture, storage, retrieval, analysis and display) to spatial data. Civil Engineering projects involve the management, analysis and integration of large amounts of geographic information to ensure success. This can include a wide range of information such as detailed design drawings originating from CAD solutions, detailed mapping, air photography, geological investigations, population information, traffic flows and environmental models. Although there are some similarities between CAD and GIS there are many differences. The most fundamental difference is that GIS mode is the world as it exists, whereas CAD models artifacts yet to be produced. As a result the data manipulated by a GIS is an order of magnitude larger and more complex than CAD systems have to deal with, and the nature of the data, its sources and its uses are quite different. In this paper, the selected area was Nahrain University. Many data were saved on the site map as a transparence layers built by using AutoCAD (2006). Then a digital library was built for the selected area and many data were saved on the site map as a themes built by using ArcView software. 展开更多
关键词 CAD CIVIL ENGINEERING COMPUTER GIS SPATIAL Data
在线阅读 下载PDF
Solution to the Breach of the Dike of Keur Bara KAIRE, Located in the Commune of Notto Diobasse in the Department of Thiès, Senegal
3
作者 Ndiouga Camara Birane Niane Séni Tamba 《Engineering(科研)》 2024年第11期390-411,共22页
This article studies the rupture of the Keur Bara KAIRE dike, located in the commune of Notto Diobasse in the department of Thiès in Senegal. The village is crossed by a stream which collects rainwater from the w... This article studies the rupture of the Keur Bara KAIRE dike, located in the commune of Notto Diobasse in the department of Thiès in Senegal. The village is crossed by a stream which collects rainwater from the west to the east, following a natural slope. The overflow of this stream causes serious flooding, leading to the total cutting of the road and the isolation of the population. These floods had tragic consequences, resulting in two losses of human life. To regulate the water level, prevent flooding, and protect agricultural and urban areas from overflows, the Senegalese authorities initiated the project to build the Keur Bara KAIRE dike in 2004, but unfortunately, the latter gave way in 2017. The geotechnical analysis was carried out on samples taken from various points on the site, revealing that the terrain is mainly composed of fine sand and the embankment is made with clayey sand. Morphometric and hydrological investigations highlight that the watershed of the Keur Bara KAIRE dike covers an area of 3.72 km2, with a projected flow of 54.99 m3/s. The resizing of the dike revealed the following data: a length of 132 meters and a height of 3 meters. The spillway is 52.99 meters long with a reservoir height of 1.22 meters. The bay walls have a thickness of 50 cm and the embankments have a slope of 1/2 upstream and downstream. The stability calculation on the broken dike reveals a sliding safety factor (FSG) of 1.84 which complies with the standard and an overturning safety factor (FSR) of 0.13 which is not verified. The surface of the watershed which is equal to 3.72 km2, also the smallest height of precipitation is equal to 234.9 mm and the largest is 664.4 mm, according to the ORSTOM and CIEH methods for hydraulic calculations. 展开更多
关键词 Keur Bara KAIRE DIKE GEOTECHNICAL Topography Surveys WATERSHED Stability
在线阅读 下载PDF
Prediction of Shear Bond Strength of Asphalt Concrete Pavement Using Machine Learning Models and Grid Search Optimization Technique
4
作者 Quynh-Anh Thi Bui Dam Duc Nguyen +2 位作者 Hiep Van Le Indra Prakash Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期691-712,共22页
Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Ext... Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design. 展开更多
关键词 Shear bond asphalt pavement grid search OPTIMIZATION machine learning
在线阅读 下载PDF
An effective stress-based DSC model for predicting hydromechanical shear behavior of unsaturated collapsible soils subjected to initial shear stress
5
作者 Saman Soleymani Borujerdi S.Mohsen Haeri +1 位作者 Amir Akbari Garakani Chandrakant SDesai 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期539-555,共17页
Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have en... Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have encouraged several investigators to develop analytical, empirical, or semi-empirical models for predicting the shear behavior of unsaturated soils. However, most of the previously proposed models are for specimens subjected to the isotropic state of stress, without considering the effect of initial shear stress. In this study, a hydromechanical constitutive model is proposed for unsaturated collapsible soils during shearing, with consideration of the effect of the initial shear stress. The model implements an effective stress-based disturbed state concept (DSC) to predict the stress-strain behavior of the soil. Accordingly, material/state variables were defined for both the start of the shearing stage and the critical state of the soil. A series of laboratory tests was performed using a fully automated unsaturated triaxial device to verify the proposed model. The experimental program included 23 suction-controlled unsaturated triaxial shear tests on reconstituted specimens of Gorgan clayey loess wetted to different levels of suctions under both isotropic and anisotropic stress states. The results show excellent agreement between the prediction by the proposed model and the experimental results. 展开更多
关键词 Unsaturated collapsible soil Initial shear stress Hydromechanical shear behavior Effective stress Disturbed state concept Critical state
在线阅读 下载PDF
Physico-Chemical Studies and Improving the Strength of Earth Bricks Stabilized with Crushed Cellulose Paper: The Case of the Urban Communities of Mamou and Kouroussa
6
作者 Mamady Kourouma Alhassane Diami Diallo +3 位作者 Mamadou Madaniou Sow Adama Moussa Sakho Amara Kourouma Maimouna Dramé 《Journal of Materials Science and Chemical Engineering》 2025年第2期53-67,共15页
The aim of this study is to enhance the value of local earth materials used in the construction of certain homes in the Republic of Guinea. Thus, a trial study to improve the quality of mud bricks using paper fibers o... The aim of this study is to enhance the value of local earth materials used in the construction of certain homes in the Republic of Guinea. Thus, a trial study to improve the quality of mud bricks using paper fibers obtained by grinding and soaking in water and then drying were used as a stabilizer in the manufacture of these mud bricks from the sample of two sites Dounkiwal (DK) (in Mamou and the sample from the urban commune of Kouroussa). To do this, certain methods and means of identification were carried out, namely: geotechnical, mineralogical and chemical analyses. Sample DK from Mamou has a silty-clay geotechnical characteristic with a plasticity index Ip of 12.75%. However, mineralogical and chemical studies showed that sample Dounkiwal (DK) (Mamou) contains a high proportion of silica and iron oxides (79.63%) and Fe2O3 (11.85%), associated with other alkaline earth oxides and ions: CaO;MgO;SO32−;Cl−, i.e. 3.96%;0.96%;0.28% and 0.039% respectively. Its loss on ignition (LOI) and insoluble residues are 15.40% and 56.36%. The evaluation of the number of huts in Upper and Middle Guinea showed that the populations of these areas have been using mud bricks for several decades in the construction of dwellings. The average value found for the compressive strength of these bricks (from samples I, II and III from Kouroussa) is 0.16 MPa. This value is appreciable in the construction of mud houses. 展开更多
关键词 Centenary Hut Mud Brick Hut Construction Resistance Durability
在线阅读 下载PDF
The Early Basilica Church, El-Ashmonein Archaeological Site, Minia, Egypt: Geo-Environmental Analysis and Engineering Characterization of the Building Materials 被引量:1
7
作者 Sayed Hemeda Abdulrahman Fahmy +1 位作者 Abbas Moustafa Mahmoud Abd El Hafez 《Open Journal of Geology》 2019年第3期157-186,共30页
El-Ashmonein is a significant archaeological site with different buildings from various eras. Between the villages of El-Idara and El-Ashmonein are there mains of Hermopolis, one of the ancient Egyptian metropolis cap... El-Ashmonein is a significant archaeological site with different buildings from various eras. Between the villages of El-Idara and El-Ashmonein are there mains of Hermopolis, one of the ancient Egyptian metropolis capitals of the fifteenth century of Upper Egypt, called the hare. The buildings in this archaeological site are exposed to many causes of destruction and damage. The remaining structures and granite free standing columns in this area are suffered from plenty of geo-environmental and geotechnical problems. The main objectives of this study are 1) to assess the current state of preservation of this important archaeological site, especially the basilica church with its free standing huge columns, 2) to analyze the different actions which cause the destruction of the archaeological site, in particular the old flash floods and earthquakes, and 3) to identify the geochemical and engineering properties of the construction materials of the granitic columns and other limestone structures of the basilica church by using different kind of sophisticated analytical and diagnostic tools and methods. The multi-criteria analysis allowed the integration of several elements for mapping the vulnerable zones. Results revealed that about 80% of the study area was exposed to high and medium old floods vulnerability because of the vicinity to the Nile River. The structural and non-structural measures recommended in this research will help the decision makers and planners to effectively develop strategies for future site management, intervention retrofitting and rehabilitation of this unique archaeological site. 展开更多
关键词 El-Ashmonein Basilica CHURCH Flash Floods Construction Materials ENGINEERING CHARACTERIZATION
在线阅读 下载PDF
Dynamic discrete element method and its application in rock mass engineering
8
作者 陶连金 姜德义 张倬元 《中国有色金属学会会刊:英文版》 CSCD 2000年第6期842-846,共5页
Based on conventional discrete element method, the idea and calculating method of dynamic discrete element (DDEM) was proposed, and a relevant program was developed. The application of the method is presented in rock ... Based on conventional discrete element method, the idea and calculating method of dynamic discrete element (DDEM) was proposed, and a relevant program was developed. The application of the method is presented in rock mechanics and engineering, which indicates that the method can be widely used in dynamic response and stability analysis of jointed rockmass under dynamic load. [ 展开更多
关键词 dynamic response discrete element method rock mass engineering
在线阅读 下载PDF
The Consequence of Particle Crushing in Engineering Properties of Granular Materials
9
作者 Omar H. Al Hattamleh Hussien H. Al-Deeky Mohammad N. Akhtar 《International Journal of Geosciences》 2013年第7期1055-1060,共6页
This paper presents experimental investigation for particles breakage for natural sand. The particle breakage was induced by subjecting the sample to one dimensional compression. Grain size analyses were performed bef... This paper presents experimental investigation for particles breakage for natural sand. The particle breakage was induced by subjecting the sample to one dimensional compression. Grain size analyses were performed before and after induced breakage. Thereafter, the sand shear strength parameters were assessed using direct shear box tests and the coefficient of permeability was assessed using constant head permeameter. Examining the obtained results revealed that the amount of breakage due to one dimensional compression was of order higher than the amount occurring during direct shear test. Peak shear strength parameters decreased with the particles breakage increasing. Moreover, dilation angle of shear strength pronouncedly decreases with the amount of particles breakage increasing. Crushing has obvious effect on the evaluated coefficient of permeability. 展开更多
关键词 SAND DILATANCY Frictional Materials CRUSHING PARTICLE BREAKAGE Permeability
在线阅读 下载PDF
Topology, Size, and Shape Optimization in Civil Engineering Structures: A Review
10
作者 Ahmed Manguri Hogr Hassan +1 位作者 Najmadeen Saeed Robert Jankowski 《Computer Modeling in Engineering & Sciences》 2025年第2期933-971,共39页
The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal de... The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal design,by considering material performance,cost,and structural safety.The design approaches aim to reduce the built environment’s energy use and carbon emissions.This comprehensive review examines optimization techniques,including size,shape,topology,and multi-objective approaches,by integrating these methodologies.The trends and advancements that contribute to developing more efficient,cost-effective,and reliable structural designs were identified.The review also discusses emerging technologies,such as machine learning applications with different optimization techniques.Optimization of truss,frame,tensegrity,reinforced concrete,origami,pantographic,and adaptive structures are covered and discussed.Optimization techniques are explained,including metaheuristics,genetic algorithm,particle swarm,ant-colony,harmony search algorithm,and their applications with mentioned structure types.Linear and non-linear structures,including geometric and material nonlinearity,are distinguished.The role of optimization in active structures,structural design,seismic design,form-finding,and structural control is taken into account,and the most recent techniques and advancements are mentioned. 展开更多
关键词 Structural optimization topology optimization size optimization shape optimization multi-objective optimization
在线阅读 下载PDF
A model test system with a dynamic load device for geotechnical engineering in cold regions
11
作者 ShuPing Zhao Wei Ma +1 位作者 GuiDe Jiao Fei Luo 《Research in Cold and Arid Regions》 2012年第2期115-120,共6页
A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load de... A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load device, together with sensors and data loggers for detecting stress, deformation, and temperature changes. The system can accommodate soil blocks up to 3 m in length, 2.5 m in width, and 1 m in height. The lowest temperature provided by the refrigeration device is -20 ℃. The maximum load provided by the dynamic load device is 100 kN and the vibration fi'equency of the dynamic load can range from 0.1 to 10 Hz. A number of waveforms, such as sine waves, rectangular waves, triangle waves, and other user-defined waves can be generated by the dynamic load device controller. 展开更多
关键词 model test system dynamic load device STRESS DEFORMATION temperature change
在线阅读 下载PDF
Impact of COVID-19 on the Contracting &Engineering Companies in Gaza Strip
12
作者 Ismail Al Daoor 《Open Journal of Civil Engineering》 2022年第1期75-86,共12页
Construction projects are among the riskiest projects, which require the application of the right rules and to abide by the proper safety standards. Thus, this study aims to study the impact of COVID-19 on the constru... Construction projects are among the riskiest projects, which require the application of the right rules and to abide by the proper safety standards. Thus, this study aims to study the impact of COVID-19 on the construction and engineering companies due to the Corona pandemic in the Gaza Strip, and introducing the means used in dealing with this pandemic and how to avoid, limit and deal with it. And to shed light on the most important obstacles and challenges facing the construction sector in the light of the outbreak of the epidemic. To achieve this, a cross-sectional study based on an online questionnaire was conducted by Google Forms. Then, the data collected was analyzed using the thematic analysis approach. The results show that best procedures to mitigate the impact of this epidemic and to prioritize the safety and health of employees in contracting and engineering companies, to provide a safe work environment and developing plans to confront the spread of injury in the work-environment. The study recommends that government may provide financial support to companies and reduce taxes imposed on them in order to be able to confront this pandemic. 展开更多
关键词 COVID-19 IMPACT Contracting & Engineering Companies Mitigate Gaza Strip
在线阅读 下载PDF
Assessing foundation behaviour under complex loading near tunnels
13
作者 Piyush KUMAR Vinay Bhushan CHAUHAN Aayush KUMAR 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3503-3520,共18页
The stability of strip footings subjected to eccentrically inclined loads is critical for reliable foundation design.This study investigates the effect of a circular unlined tunnel in a rock mass on the ultimate beari... The stability of strip footings subjected to eccentrically inclined loads is critical for reliable foundation design.This study investigates the effect of a circular unlined tunnel in a rock mass on the ultimate bearing capacity(UBC)of a foundation with width B under inclined and eccentric loads.Adaptive finite element limit analysis was employed to evaluate the reduction in UBC of the footing resting above a tunnel.The examined critical parameters include normalized load eccentricity(e/B),load inclination(β),and horizontal and vertical distances of the tunnel from the foundation(P/B and Q/B,respectively),along with rock mass properties.The results reveal that for e/B≥0.25 and β≤60°,the reduction coefficient,R_(c)≥0.90,suggesting that the presence of a tunnel has a minimal impact on the load-bearing capacity of the footing,with failure primarily governed by load eccentricity and inclination.Additionally,potential failure mechanisms are explored,showing that at lower e/B,higher β,and lower Q/B,the tunnel significantly affects footing's failure envelope.Conversely,at higher e/B and lower β,failure is due to rotational effects of footing,regardless of the tunnel's position.To predict the Rc more accurately,due to the time-consuming nature of direct calculations,both MLR and ANN models were developed.The MLR model provided a baseline for comparison,while the ANN model,with a coefficient of determination(R2)of 0.98,demonstrated superior accuracy compared to the R2=0.96 of MLR.Using both approaches ensured robust and efficient predictions of Rc.Since Rc does not directly provide the reduced UBC of footing due to presence of tunnel,the study introduced bearing capacity factor(Nc)to enable direct calculation of the reduced UBC of footing.These findings offer theoretical guidelines for preliminary design and provide practitioners with an effective tool for evaluating UBC reduction in complex loading scenarios involving tunnels. 展开更多
关键词 Unlined tunnel Shallow foundation FELA Rock Mass ANN MLR
在线阅读 下载PDF
Boulder-induced form roughness and skin shear stresses in a gravel-bed stream
14
作者 DAS Ratul DATTA Akash 《Journal of Mountain Science》 SCIE CSCD 2024年第1期346-360,共15页
Boulder spacing in mountain rivers and near-wake flow zones within the boulder array is very useful for fish habitat and growth of aquatic organisms.The present study aims to investigate how the boulder array and spac... Boulder spacing in mountain rivers and near-wake flow zones within the boulder array is very useful for fish habitat and growth of aquatic organisms.The present study aims to investigate how the boulder array and spacing influence the near-bed flow structures in a gravel-bed stream.Boulders are staggered over a gravel-bed stream with three different inter-boulder spacing namely(a)large(b)medium and(c)small spacing.An acoustic Doppler velocimeter was used for flow measurements in a rectangular channel and the results were compared with those acquired from numerical simulation.The time-averaged velocity profiles at the near-wake flow zones of boulders experience maximum flow retardation which is an outcome of the boulder-induced form roughness.The ratio of velocity differences associated to form and skin roughness and its positive magnitude reveals the dominance of form roughness closest to the boulders.Form roughness computed is 1.75 to 2 times higher than the skin roughness at the near-wake flow region.In particular,the collective immobile boulders placed at different inter-boulder spacings developed high and low bed shear stresses closest to the boulders.The low bed shear stresses characterised by a secondary peak developed at the trough location of the boulders is attributed to the skin shear stress.Further,the spatial averaging of time-averaged flow quantities gives additional impetus to present an improved illustration of fluid shear stresses.The formation of form-induced shear stress is estimated to be 17%to 23%of doubleaveraged Reynolds shear stress and partially compensates for the damping of time-averaged Reynolds shear stress in the interfacial sub-layer.The quadrant analysis of spatial velocity fluctuations depicts that the form-induced shear stresses are dominant in the interfacial sub-layer and have no significance above the gravel-bed surface. 展开更多
关键词 Array of boulders Near wake flow zones Velocity distributions Skin roughness Form induced shear stresses
在线阅读 下载PDF
Tensile Strain Capacity Prediction of Engineered Cementitious Composites (ECC) Using Soft Computing Techniques
15
作者 Rabar H.Faraj Hemn Unis Ahmed +2 位作者 Hardi Saadullah Fathullah Alan Saeed Abdulrahman Farid Abed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2925-2954,共30页
Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is presen... Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is present.In order to address these challenges,short polymer fibers are randomly dispersed in a cement-based matrix to forma highly ductile engineered cementitious composite(ECC).Thismaterial exhibits high ductility under tensile forces,with its tensile strain being several hundred times greater than conventional concrete.Since concrete is inherently weak in tension,the tensile strain capacity(TSC)has become one of the most extensively researched properties.As a result,developing a model to predict the TSC of the ECC and to optimize the mixture proportions becomes challenging.Meanwhile,the effort required for laboratory trial batches to determine the TSC is reduced.To achieve the research objectives,five distinct models,artificial neural network(ANN),nonlinear model(NLR),linear relationship model(LR),multi-logistic model(MLR),and M5P-tree model(M5P),are investigated and employed to predict the TSCof ECCmixtures containing fly ash.Data from115 mixtures are gathered and analyzed to develop a new model.The input variables include mixture proportions,fiber length and diameter,and the time required for curing the various mixtures.The model’s effectiveness is evaluated and verified based on statistical parameters such as R2,mean absolute error(MAE),scatter index(SI),root mean squared error(RMSE),and objective function(OBJ)value.Consequently,the ANN model outperforms the others in predicting the TSC of the ECC,with RMSE,MAE,OBJ,SI,and R2 values of 0.42%,0.3%,0.33%,0.135%,and 0.98,respectively. 展开更多
关键词 Engineered cementitious composites fly ash curing time tensile strain capacity MODELING
在线阅读 下载PDF
Artificial Intelligence Prediction of One-Part Geopolymer Compressive Strength for Sustainable Concrete
16
作者 Mohamed Abdel-Mongy Mudassir Iqbal +3 位作者 M.Farag Ahmed.M.Yosri Fahad Alsharari Saif Eldeen A.S.Yousef 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期525-543,共19页
Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for pre... Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for precursors for developing a one-part geopolymer.However,determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported.Therefore,in this study,machine learning methods such as artificial neural networks(ANN)and gene expression programming(GEP)models were developed usingMATLAB and GeneXprotools,respectively,for the prediction of compressive strength under variable input materials and content for fly ash and slag-based one-part geopolymer.The database for this study contains 171 points extracted from literature with input parameters:fly ash concentration,slag content,calcium hydroxide content,sodium oxide dose,water binder ratio,and curing temperature.The performance of the two models was evaluated under various statistical indices,namely correlation coefficient(R),mean absolute error(MAE),and rootmean square error(RMSE).In terms of the strength prediction efficacy of a one-part geopolymer,ANN outperformed GEP.Sensitivity and parametric analysis were also performed to identify the significant contributor to strength.According to a sensitivity analysis,the activator and slag contents had the most effects on the compressive strength at 28 days.The water binder ratio was shown to be directly connected to activator percentage,slag percentage,and calcium hydroxide percentage and inversely related to compressive strength at 28 days and curing temperature. 展开更多
关键词 Artificial intelligence techniques one-part geopolymer artificial neural network gene expression modelling sustainable construction polymers
在线阅读 下载PDF
Effects of the Water-Cement Ratio and the Molding Temperature on the Hydration Heat of Cement
17
作者 代金鹏 HE Jie +1 位作者 WANG Qicai LOU Xuyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期990-998,共9页
The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and... The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and 0.45,and the molding temperature was specified at 10 and 20℃.The experimental results show that,as the water-binder ratio increases,the value of the second temperature peak on the temperature curve of the cement paste decreases,and the age at which the peak appears is delayed.The higher the water-cement ratio,the higher the hydration heat release in the early period of cement hydration,but this trend reverses in the late period.There are intersection points of the total hydration heat curve of the cement pastes under the influence of the water-cement ratio,and this law can be observed at both molding temperatures.With the increase in the molding temperature,the age of the second temperature peak on the temperature curve of the cement paste will advance,but the temperature peak will decrease.The higher the molding temperature,the earlier the acceleration period of the cement hydration began,and the larger the hydration heat of the cement in the early stage,but the smaller the total heat in the late period.A subsection function calculation model of the hydration heat,which was based on the existing models,was proposed in order to predict the heat of the hydration of the concrete. 展开更多
关键词 semi-adiabatic calorimetry hydration heat water-cement ratio molding temperature MODELING
在线阅读 下载PDF
Nonlinear vibration of Timoshenko FG porous sandwich beams subjected to a harmonic axial load
18
作者 Milad Lezgi Moein Zanjanchi Nikoo Majid Ghadiri 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期649-662,共14页
In this study,the instability and bifurcation diagrams of a functionally graded(FG)porous sandwich beam on an elastic,viscous foundation which is influenced by an axial load,are investigated with an analytical attitud... In this study,the instability and bifurcation diagrams of a functionally graded(FG)porous sandwich beam on an elastic,viscous foundation which is influenced by an axial load,are investigated with an analytical attitude.To do so,the Timoshenko beam theory is utilized to take the shear deformations into account,and the nonlinear Von-Karman approach is adopted to acquire the equations of motion.Then,to turn the partial differential equations(PDEs)into ordinary differential equations(ODEs)in the case of equations of motion,the method of Galerkin is employed,followed by the multiple time scale method to solve the resulting equations.The impact of parameters affecting the response of the beam,including the porosity distribution,porosity coefficient,temperature increments,slenderness,thickness,and damping ratios,are explicitly discussed.It is found that the parameters mentioned above affect the bifurcation points and instability of the sandwich porous beams,some of which,including the effect of temperature and porosity distribution,are less noticeable. 展开更多
关键词 sandwich beam Timoshenko beam parametric excitation bifurcation diagrams dynamic instability
在线阅读 下载PDF
Reliability Analysis of Reinforcement Based on GM(1,1)-Markov Semi-immersion Test
19
作者 FU Yong QIAO Hongxia HAKUZWEYEZU Theogene 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1177-1187,共11页
To investigate the corrosion degradation law and service life of reinforced concrete in various salt solution environments,reinforced concrete specimens were semi-immersed in 3%Na_(2)CO_(3)(N3-0-0),3%Na_(2)CO_(3)+3%Na... To investigate the corrosion degradation law and service life of reinforced concrete in various salt solution environments,reinforced concrete specimens were semi-immersed in 3%Na_(2)CO_(3)(N3-0-0),3%Na_(2)CO_(3)+3%NaCl(N3-Cl3-0)and 3%Na_(2)CO_(3)+3%NaCl+3%Na_(2)SO_(4)(N3-Cl3-S3)salt solutions.The electrochemical workstation was used for regular non-destructive testing,and the polarization curve and related electrochemical parameters were used as the macroscopic durability evaluation indicators,while microscopic analysis of steel bar corrosion products was performed in combination with SEM and EDS.In addition,the corrosion current density degradation model of GM(1,1)was established and compared with the modified GM(1,1)-Markov degradation model.The results showed that the prediction error of the GM(1,1)-Markov model was smaller and more accurate than that of GM(1,1).The reinforced concrete specimens in the N3-0-0,N3-Cl3-0 and N3-Cl3-S3 solutions reached the failure state in 3.08,1.67,and 2.30 years,respectively,as predicted by the GM(1,1)-Markov model.According to ESM and EDS microscopic analysis of reinforcement,carbonate had no significant effect on reinforcement corrosion,chloride ions played a dominant role in reinforcement corrosion,and sulfate ion improved concrete's resistance to chloride ion corrosion.Based on GM(1,1)-Markov model,the failure and damage of reinforced concrete in saline soil areas can be quantitatively evaluated in the whole life cycle,which provides a theoretical basis for the early maintenance or reinforcing of reinforced concrete. 展开更多
关键词 salt solution semi-immersion corrosion current density GM(1 1)-Markov
在线阅读 下载PDF
Enhancing the Decomposition of Paper Cups Using Galleria Mellonella and Eisenia Fetida
20
作者 Shadi Moqbel Habib Al-Ghoul +1 位作者 Abd Al-Majeed Al-Ghzawi Rami Mukbel 《Journal of Renewable Materials》 EI CAS 2024年第2期349-367,共19页
The composition of paper cups creates a challenge for the recycling industry,as the paperboard–plastic film composite is hard to separate.Therefore,paper cups are sent to landfills or waste incinerators.This study ex... The composition of paper cups creates a challenge for the recycling industry,as the paperboard–plastic film composite is hard to separate.Therefore,paper cups are sent to landfills or waste incinerators.This study explores the combined use of red worms(Eisenia fetida)and Greater wax moth(Galleria mellonella)in the biodegradation of paper cups.The study investigates the conditions and combinations that promote using Eisenia fetida and Galleria mellonella for degrading paper cups.The study considered the influence of environmental temperature,the presence of food waste,varying the number of Eisenia fetida worms,and the presence of a Galleria mellonella growth-slowing agent on the degradation process.To achieve the study objectives,the study followed a quantitative approach.The study monitored the degradation of paper cup cuts that were placed in jars containing different combinations of Eisenia fetida worms,Galleria mellonella larvae,food waste,bedding material,and Galleria mellonella growth-slowing agents.The study found that the best operating temperature is 30oC.The study found that using food waste improves the performance of Eisenia fetida worms and Galleria mellonella larvae significantly.The study found that adding a Galleria mellonella growth-slowing agent slightly enhances the degradation of the paper cup.Finally,a numerical model was obtained to simulate the paper cup degradation efficiency. 展开更多
关键词 Paper cups resource recovery RECYCLING circular economy Galleria mellonella Eisenia fetida
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部