The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear sy...The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.展开更多
Optimal deterministic disturbances rejection control problem for singularly perturbed linear systems is considered. By using the slow-fast decomposition theory of singular perturbation, the existent and unique conditi...Optimal deterministic disturbances rejection control problem for singularly perturbed linear systems is considered. By using the slow-fast decomposition theory of singular perturbation, the existent and unique conditions of the feedforward and feedback composite control (FFCC) laws for both infinite-time and finite-time are proposed, and the design approaches are given. A disturbance observer is introduced to make the FFCC laws realizable physically. Simulation results indicate that the FFCC laws are robust with respect to external disturbances.展开更多
基金supported by the Doctoral Foundation of Qingdao University of Science and Technology(0022330).
文摘The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.
基金This project was supported by the National Natural Science Foundation of China (60574023), the Natural Science Foundation of Shandong Province (Z2005G01), and the Natural Science Foundation of Qingdao City (05-1-JC-94).
文摘Optimal deterministic disturbances rejection control problem for singularly perturbed linear systems is considered. By using the slow-fast decomposition theory of singular perturbation, the existent and unique conditions of the feedforward and feedback composite control (FFCC) laws for both infinite-time and finite-time are proposed, and the design approaches are given. A disturbance observer is introduced to make the FFCC laws realizable physically. Simulation results indicate that the FFCC laws are robust with respect to external disturbances.