期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
Recent Progress and Prospects of Layered Cathode Materials for Potassium-ion Batteries 被引量:3
1
作者 Jiaying Liao Yu Han +3 位作者 Zhuangzhuang Zhang Jingyi Xu Jianbo Li Xiaosi Zhou 《Energy & Environmental Materials》 SCIE CSCD 2021年第2期178-200,共23页
Layered materials with two-dimensional ion diffusion channels and fast kinetics are attractive as cathode materials for secondary batteries.However,one main challenge in potassium-ion batteries is the large ion size o... Layered materials with two-dimensional ion diffusion channels and fast kinetics are attractive as cathode materials for secondary batteries.However,one main challenge in potassium-ion batteries is the large ion size of K^(+),along with the strong K^(+)-K^(+)electrostatic repulsion.This strong interaction results in initial K deficiency,greater voltage slope,and lower specific capacity between set voltage ranges for layered transition metal oxides.In this review,a comprehensive review of the latest advancements in layered cathode materials for potassium-ion batteries is presented.Except for layered transition metal oxides,some polyanionic compounds,chalcogenides,and organic materials with the layered structure are introduced separately.Furthermore,summary and personal perspectives on future optimization and structural design of layered cathode materials are constructively discussed.We strongly appeal to the further exploration of layered polyanionic compounds and have demonstrated a series of novel layered structures including layered K_(3)V_(2)(PO_(4))_(3). 展开更多
关键词 CATHODE layered material potassium-ion battery structural regulation
在线阅读 下载PDF
The manipulation of rectifying contact of Co and nitrogen-doped carbon hierarchical superstructures toward high-performance oxygen reduction reaction 被引量:1
2
作者 Jing Li Tingyu Lu +6 位作者 Yu Fang Guangyao Zhou Mingyi Zhang Huan Pang Jun Yang Yawen Tang Lin Xu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期338-349,共12页
Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,su... Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,such as metal-air batteries.Electronic modification through constructing metal/semiconductor Schottky heterointerface represents a powerful strategy to enhance the electrochemical performance.Herein,we demonstrate a concept of Schottky electrocatalyst composed of uniform Co nanoparticles in situ anchored on the carbon nanotubes aligned on the carbon nanosheets(denoted as Co@N-CNTs/NSs hereafter)toward ORR.Both experimental findings and theoretical simulation testify that the rectifying contact could impel the voluntary electron flow from Co to N-CNTs/NSs and create an internal electric field,thereby boosting the electron transfer rate and improving the intrinsic activity.As a consequence,the Co@N-CNTs/NSs deliver outstanding ORR activity,impressive long-term durability,excellent methanol tolerance,and good performance as the air-cathode in the Zn-air batteries.The design concept of Schottky contact may provide the innovational inspirations for the synthesis of advanced catalysts in sustainable energy conversion fields. 展开更多
关键词 Co-based ELECTROCATALYSTS oxygen reduction reaction rectifying CONTACT Zn-air BATTERIES
在线阅读 下载PDF
Recent Strategies and Advances in Hydrogel‑Based Delivery Platforms for Bone Regeneration
3
作者 Xiao Wang Jia Zeng +4 位作者 Donglin Gan Kun Ling Mingfang He Jianshu Li Yongping Lu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期389-439,共51页
Bioactive molecules have shown great promise for effectively regulating various bone formation processes,rendering them attractive therapeutics for bone regeneration.However,the widespread application of bioactive mol... Bioactive molecules have shown great promise for effectively regulating various bone formation processes,rendering them attractive therapeutics for bone regeneration.However,the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo.Hydrogels have emerged as ideal carriers to address these challenges,offering the potential to prolong retention times at lesion sites,extend half-lives in vivo and mitigate side effects,avoid burst release,and promote adsorption under physiological conditions.This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration,encompassing applications in cranial defect repair,femoral defect repair,periodontal bone regeneration,and bone regeneration with underlying diseases.Additionally,this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery,carrier-assisted delivery,and sequential delivery.Finally,this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration. 展开更多
关键词 HYDROGEL Bone regeneration Bioactive molecules Drug delivery Nano-/microscale carriers
在线阅读 下载PDF
Engineering of Fe d-band center in Fe_(3)O_(4)/CeO_(2)hetero-nanoparticles via orbital coupling for high-efficiency oxygen reduction electrocatalysis
4
作者 Jiayi Liu Jingwen Yin +6 位作者 Yingzi Lin Mingxin Pang Huan Pang Songtao Zhang Lin Xu Jun Yang Yawen Tang 《Nano Research》 SCIE EI 2025年第1期129-139,共11页
The deliberate engineering of the d-band center of metal site represents an effective strategy to boost the intrinsic electrocatalytic performance toward the oxygen reduction reaction(ORR).Herein,following a heteroint... The deliberate engineering of the d-band center of metal site represents an effective strategy to boost the intrinsic electrocatalytic performance toward the oxygen reduction reaction(ORR).Herein,following a heterointerfaceinduced orbital coupling rationale,we report a judicious design of an efficient ORR electrocatalyst consisting of Fe_(3)O_(4)/CeO_(2)hetero-nanoparticles in-situ encased into N-doped carbon nanofibers(abbreviated as Fe_(3)O_(4)/CeO_(2)@N-CNFs hereafter).The theoretic calculations uncover that the Fe_(3)O_(4)/CeO_(2)heterointerface-triggered orbital coupling can cause the down shift of the d-band center positions of Fe sites,which leads to the weakened chemisorption of oxygenated groups and lowered energy barrier for the potential-determining step,ultimately dramatically boosting the ORR intrinsic activity.As a consequence,the well-designed Fe_(3)O_(4)/CeO_(2)@N-CNFs display admirable ORR activity with a half-wave potential of 0.84 V and outstanding structural/electrochemical stability in an alkaline electrolyte,surpassing the commercial Pt/C benchmark and a majority of recently reported Fe_(3)O_(4)-based electrocatalysts.More encouragingly,the Fe_(3)O_(4)/CeO_(2)@N-CNFsincorporated Zn-air battery outperforms the Pt/C-assembled counterpart with higher power density,larger energy density,and excellent cycling stability,serving as a competent candidate for ORR-involved renewable energy setups.This study offers an innovative approach for the rational manipulation of the d-band center and interfacial electron behavior of active sites toward the optimization of electrocatalytic performance. 展开更多
关键词 hetero-nanoparticles electrospinning interfacial engineering orbital coupling oxygen reduction reaction
原文传递
Construction of highly-stable graphene hollow nanospheres and their application in supporting Pt as effective catalysts for oxygen reduction reaction 被引量:3
5
作者 Huaifang Zhang Jubing Zhang +4 位作者 Kunhao Liu Yunqi Zhu Xiaoyu Qiu Dongmei Sun Yawen Tang 《Green Energy & Environment》 SCIE CSCD 2019年第3期245-253,共9页
The construction and surface modification of three-dimensional(3D) graphene structures have been recognized as effective ways to prepare high-performance graphene-based composites in energy-related applications. Herei... The construction and surface modification of three-dimensional(3D) graphene structures have been recognized as effective ways to prepare high-performance graphene-based composites in energy-related applications. Herein, on the basis of well-defined morphology and efficient electron conduction, the 3D highly-stable graphene hollow nanospheres have been synthesized by using sacrificial template method. The asprepared 3D graphene nanospheres exhibit superior mechanical stability, electrochemical stability, and strong hydrophobicity, which may accelerate the emission of H2O in acidic medium-based ORR. Accordingly, the 3D highly-stable graphene nanospheres are used to confine tiny Pt nanoparticles(3Dr-GO@Pt HNSs) for ORR in acidic medium, exhibiting superior activity with 4-electron-transfered pathway. Meanwhile,dramatically improved durability are achieved in terms of both ORR mass activity and electrochemically surface area compared to those of commercial Pt/C. 展开更多
关键词 Sacrificial TEMPLATE method 3D r-GO NANOSPHERES Highly-stable HOLLOW structure Oxygen reduction reaction
在线阅读 下载PDF
Facile synthesis of KVPO_(4)F/reduced graphene oxide hybrid as a high-performance cathode material for potassium-ion batteries 被引量:3
6
作者 Jianzhi Xu Jiaying Liao +4 位作者 Yifan Xu Jianbo Li Chuannan Zhu Jun Lin Xiaosi Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期284-292,共9页
Potassium-ion batteries(PIBs) as a substitute for lithium-ion batteries have aroused widespread attention and have been rapidly developed. In the positive electrode materials, polyanionic compound has a high working v... Potassium-ion batteries(PIBs) as a substitute for lithium-ion batteries have aroused widespread attention and have been rapidly developed. In the positive electrode materials, polyanionic compound has a high working voltage and large reversible capacity on account of its distinct framework and the strong inducing effect of the anionic group. Herein, a KVPO_(4)F/reduced graphene oxide(KVPF/r GO) hybrid was fabricated via a simple multi-step approach as the polyanionic cathode material for PIBs. Profiting from the small size of KVPF nanoparticles and their uniform distribution in the r GO framework, the assynthesized KVPF/r GO hybrid manifests a large discharge capacity of 103.2 mAh g^(-1) with an outstanding energy density of 436.5 Wh kg^(-1). Through r GO decoration, the hybrid also demonstrates remarkable rate and cycling properties. By employing ex-situ X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) techniques, the potassium storage mechanism of KVPF was clearly revealed. The facile preparation procedure and superior properties endow it great application prospects in large-scale energy storage. 展开更多
关键词 KVPO_(4)F Potassium-ion battery CATHODE Reduced graphene oxide Ex-situ XRD
在线阅读 下载PDF
Reactive template-derived interfacial engineering of CoP/CoO heterostructured porous nanotubes towards superior electrocatalytic hydrogen evolution 被引量:4
7
作者 Qixing Zhou Ruoxu Sun +7 位作者 Yiping Ren Run Tian Jun Yang Huan Pang Kai Huang Xinlong Tian Lin Xu Yawen Tang 《Carbon Energy》 SCIE CAS CSCD 2023年第1期194-205,共12页
The development of economical,efficient,and robust electrocatalysts toward the hydrogen evolution reaction(HER)is highly imperative for the rapid advancement of renewable H2 energy-associated technologies.Extensive ut... The development of economical,efficient,and robust electrocatalysts toward the hydrogen evolution reaction(HER)is highly imperative for the rapid advancement of renewable H2 energy-associated technologies.Extensive utilization of the heterointerface effect can endow the catalysts with remarkably boosted electrocatalytic performance due to the modified electronic state of active sites.Herein,we demonstrate deliberate crafting of CoP/CoO heterojunction porous nanotubes(abbreviated as CoP/CoO PNTs hereafter)using a self-sacrificial template-engaged strategy.Precise control over the Kirkendall diffusion process of the presynthesized cobalt–aspartic acid complex nanowires is indispensable for the formation of CoP/CoO heterostructures.The topochemical transformation strategy of the reactive templates enables uniform and maximized construction of CoP/CoO heterojunctions throughout all the porous nanotubes.The establishment of CoP/CoO heterojunctions could considerably modify the electronic configuration of the active sites and also improve the electric conductivity,which endows the resultant CoP/CoO PNTs with enhanced intrinsic activity.Simultaneously,the hollow and porous nanotube architectures allow sufficient accessibility of exterior/interior surfaces and molecular permeability,drastically promoting the reaction kinetics.Consequently,when used as HER electrocatalysts,the well-designed CoP/CoO PNTs show Pt-like activity,with an overpotential of only 61 mV at 10mA cm^(−2) and excellent stability in 1.0M KOH medium,exceeding those of the vast majority of the previously reported nonprecious candidates.Density functional theory calculations further substantiate that the construction of CoP/CoO heterojunctions enables optimization of the Gibbs free energies for water adsorption and H adsorption,resulting in boosted HER intrinsic activity.The present study may provide in-depth insights into the fundamental mechanisms of heterojunction-induced electronic regulation,which may pave the way for the rational design of advanced Earth-abundant electrocatalysts in the future. 展开更多
关键词 heterojunction hydrogen evolution reaction porous nanotubes reactive template
在线阅读 下载PDF
Synthesis of multicore-shell FeS_(2)@C nanocapsules for stable potassiumion batteries 被引量:2
8
作者 Zhuangzhuang Zhang Liping Duan +4 位作者 Yifan Xu Chuanfeng Zhao Jianchun Bao Jian Shen Xiaosi Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期126-132,I0004,共8页
Transition-metal sulfides are widely used as anodes for potassium-ion batteries(PIBs) due to their low cost and high theoretical capacity.The practical application of such materials,however,is still impeded by their i... Transition-metal sulfides are widely used as anodes for potassium-ion batteries(PIBs) due to their low cost and high theoretical capacity.The practical application of such materials,however,is still impeded by their inherent low conductivity and obvious volume change during cycling.Herein,a flexible etchassisted sulfidation strategy is reported.According to the strategy,the multicore-shell(MCS) nanocapsule structure is constructed,and then mesoporous FeS2 nanoparticles are encapsulated in the hollow carbon shell with adjustable interior space.The product,MCS-FeS2@C-20,not only features optimized inner space,but also delivers a large reversible capacity(519 mAh g^(-1) at a current density of 50 mA g^(-1)),good rate capability(107 mAh g^(-1) at a high current density of 5 A g^(-1)) and excellent cycling stability(capacity retention rate of 84.2% over 500 cycles at 0.5 A g^(-1)),making it the promising anode material for PIBs.Notably,potassium-ion full cells(MCS-FeS_(2)@C-20//K_(0.4)CoO_(2)) also show an improved potassium storage performance. 展开更多
关键词 Potassium-ion battery ANODE FeS_(2) Yolk-shell structure Carbon protection
在线阅读 下载PDF
N-doped graphene anchored ultrasmall Ir nanoparticles as bifunctional electrocatalyst for overall water splitting 被引量:1
9
作者 Wenqing Yao Xian Jiang +4 位作者 Yulian Li Cuiting Zhao Linfei Ding Dongmei Sun Yawen Tang 《Green Energy & Environment》 SCIE EI CSCD 2022年第5期1111-1118,共8页
Seeking for extremely active and durable bifunctional electrocatalysts towards the overall water splitting possesses a strategic significance on the development of sustainable and clean energy for the replacement of f... Seeking for extremely active and durable bifunctional electrocatalysts towards the overall water splitting possesses a strategic significance on the development of sustainable and clean energy for the replacement of fossil fuels.Ir-based nanomaterials are deemed as one of the most highefficiency oxygen evolution reaction electrocatalysts while the hydrogen evolution reaction performance is unfavorable.In this work,we report a one-pot hydrothermal synthesis of N-doped graphene anchored Ir nanoparticles(Ir/N-rGO) with ultrasmall particle size(~2.0 nm).Apart from the predictably superior OER performance,the resultant Ir/N-rGO also displays excellent hydrogen evolution reaction(HER) performance,requiring merely 76 and 260 mV overpotentials to achieve the current density of 10 mA cm^(-2) towards HER and OER,respectively.When applied as the bifunctional electrodes for overall water splitting,Ir/N-rGO needs a lower overpotential(1.74 V) to achieve a current density of50 mA cm^(-2) in alkaline solution,exceeding that of Pt/C and RuO_(2) couple(1.85 V).Thus,the as-fabricated Ir/N-rGO has a commendable prospect in the practical application of alkaline water electrocatalysis. 展开更多
关键词 SPLITTING functional ALKALINE
在线阅读 下载PDF
One-pot synthesis of Ag-rich AgPd alloy nanoactiniae and their enhanced electrocatalytic activity toward oxygen reduction
10
作者 Xiaoyu Qiu Xiaohong Yan +5 位作者 Ke Cen Huaifang Zhang Geng Gao Liangjun Wu Dongmei Sun Yawen Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第1期111-117,共7页
The electro-catalytic properties can be effectively optimized by designing bimetallic alloy nanoparticles with high-content less-active metal to enhance the competence of more-active noble metal. Herein, a one-pot hyd... The electro-catalytic properties can be effectively optimized by designing bimetallic alloy nanoparticles with high-content less-active metal to enhance the competence of more-active noble metal. Herein, a one-pot hydrothermal approach is demonstrated for the controllable synthesis of Ag-rich Ag_9Pd_1 alloy nanoactiniae with obviously enhanced electro-catalytic activity(2.23 mA cm^(-2) at 0.85 V) and stability for oxygen reduction reaction. In alkaline solution, the ORR onset potential and half-wave potential of the Ag_9Pd_1 alloy nanoactiniae can reach a value of 1.02 V and 0.89 V, respectively, which origin from strong ligand and ensemble effects between Pd element and Ag element. The nanocrystals are uniformly alloyed, displaying a Ag_9Pd_1 combination, as displayed by an assembly of X-ray diffraction(XRD) spectrum,energy dispersive X-ray(EDX) analysis, and cyclic voltammetry(CV). This concept of tuning bimetallic alloy nanocrystals with low concentrations of more precious metal may be a promising approach to be applicable to a wide range of alloy nanocrystals. 展开更多
关键词 Ag-rich ALLOY Ag9Pd1 HYDROTHERMAL synthesis LIGAND and ensemble effects Oxygen reduction reaction
在线阅读 下载PDF
Chitosan/Sodium Alginate Multilayer pH-Sensitive Films Based on Layer-by-Layer Self-Assembly for Intelligent Packaging
11
作者 Mingxuan He Yahui Zheng +4 位作者 Jiaming Shen Jiawei Shi Yongzheng Zhang Yinghong Xiao Jianfei Che 《Journal of Renewable Materials》 EI CAS 2024年第2期215-233,共19页
The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium... The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging. 展开更多
关键词 CHITOSAN ALGINATE layer-by-layer self-assembly PH-SENSITIVE multilayer films
在线阅读 下载PDF
A mitochondria targeting Ir(Ⅲ)complex triggers ferroptosis and autophagy for cancer therapy:A case of aggregation enhanced PDT strategy for metal complexes
12
作者 Panpan Wang Hongbao Fang +5 位作者 Mengmeng Wang Guandong Zhang Na Xu Yan Su Hongke Liu Zhi Su 《Chinese Chemical Letters》 2025年第1期374-380,共7页
Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxyge... Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxygen species(ROS),and aggregation-induced ROS quenching.To address these challenges,we present a molecular self-assembly strategy utilizing aggregation-induced emission(AIE)conjugates for metal complexes.As a proof of concept,we synthesized a mitochondrial-targeting cyclometalated Ir(Ⅲ)photosensitizer Ir-TPE.This approach significantly enhances the photodynamic effect while mitigating the dark toxicity associated with AIE groups.Ir-TPE readily self-assembles into nanoaggregates in aqueous solution,leading to a significant production of ROS upon light irradiation.Photoirradiated Ir-TPE triggers multiple modes of death by excessively accumulating ROS in the mitochondria,resulting in mitochondrial DNA damage.This damage can lead to ferroptosis and autophagy,two forms of cell death that are highly cytotoxic to cancer cells.The aggregation-enhanced photodynamic effect of Ir-TPE significantly enhances the production of ROS,leading to a more pronounced cytotoxic effect.In vitro and in vivo experiments demonstrate this aggregation-enhanced PDT approach achieves effective in situ tumor eradication.This study not only addresses the limitations of metal complexes in terms of low ROS production due to aggregation but also highlights the potential of this strategy for enhancing ROS production in PDT. 展开更多
关键词 Metal complex AIEgens Mitochondria targeting Enhanced photodynamic therapy Anticancer agent
原文传递
Sn_(4)P_(3)nanoparticles confined in multilayer graphene sheets as a high-performance anode material for potassium-ion batteries 被引量:4
13
作者 Yichen Du Zuyue Yi +4 位作者 Bingbing Chen Jingyi Xu Zhuangzhuang Zhang Jianchun Bao Xiaosi Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期413-421,I0011,共10页
Phosphorus-based anodes are highly promising for potassium-ion batteries(PIBs)because of their large theoretical capacities.Nevertheless,the inferior potassium storage properties caused by the poor electronic conducti... Phosphorus-based anodes are highly promising for potassium-ion batteries(PIBs)because of their large theoretical capacities.Nevertheless,the inferior potassium storage properties caused by the poor electronic conductivity,easy self-aggregation,and huge volumetric changes upon cycling process restrain their practical applications.Now we impregnate Sn_(4)P_(3)nanoparticles within multilayer graphene sheets(Sn_(4)P_(3)/MGS)as the anode material for PIBs,greatly improving its potassium storage performance.Specifically,the graphene sheets can efficiently suppress the aggregation of Sn_(4)P_(3)nanoparticles,enhance the electronic conductivity,and sustain the structural integrity.In addition,plenty of Sn_(4)P_(3)nanoparticles impregnated in MGS offer a large accessible area for the electrolyte,which decreases the diffusion distance for K^(+)and electrons upon K^(+)insertion/extraction,resulting in an improved rate capability.Consequently,the optimized Sn_(4)P_(3)/MGS containing 80 wt%Sn_(4)P_(3)(Sn_(4)P_(3)/MGS-80)exhibits a high reversible capacity of 378.2 and 260.2 m Ah g;at 0.1 and 1 A g^(-1),respectively,and still delivers a large capacity retention of 76.6%after the 1000th cycle at 0.5 A g^(-1). 展开更多
关键词 Sn4P3 Multilayer graphene sheets Ball milling Potassium-ion batteries ANODE
在线阅读 下载PDF
Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material for potassium-ion half/full batteries 被引量:4
14
作者 Zuyue Yi Jingyi Xu +4 位作者 Zhenhua Xu Min Zhang Yanan He Jianchun Bao Xiaosi Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期241-248,共8页
Layer-structured Shsse attracts much attention as an anode material for potassium storage due to its la rge theoretical capacity.Unfortunately,their practical application is severely restrained by the dramatic volumet... Layer-structured Shsse attracts much attention as an anode material for potassium storage due to its la rge theoretical capacity.Unfortunately,their practical application is severely restrained by the dramatic volumetric variation of SnSSe.Herein,we synthesize ultrafine SnSSe/multilayer graphene nanosheet(SnSSe/MGS) by a vacuum solid-phase reaction and subsequent ball milling.Owing to the strong synergistic effect between the two components,the obtained SnSSe/MGS nanocomposite exhibits a high reversible capacity(423 mAh g^(-1) at 100 mA g^(-1)),excellent rate property(218 mAh g^(-1) at 5 A g^(-1)),and stable cycling performance(271 mAh g^(-1) after 500 cycles at 100 mA g^(-1)) in potassium-ion half batteries.Moreover,the full cell assembled by the SnSSe/MGS anode and the potassiated 3,4,9,10-perylene-tetracar boxylic aciddianhydride cathode shows excellent electrochemical performance between 0.2 and 3.3 V(209 mAh g^(-1) at 50 mA g^(-1) after 100 cycles).The presented two-step synthesis strategy of SnSSe/MGS may also provide ideas to craft other alloy-type anode materials. 展开更多
关键词 Ultrafine SnSSe Multilayer graphene nanosheet Potassium-ion batteries Anode Full cell
在线阅读 下载PDF
Cocoon-shaped P3-type K0.5Mn0.7Ni0.3O2 as an advanced cathode material for potassium-ion batteries 被引量:2
15
作者 Liping Duan Jianzhi Xu +5 位作者 Yifan Xu Ruiqi Tian Yingying Sun Chuannan Zhu Xiangyin Mo Xiaosi Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期332-338,I0008,共8页
Potassium ion batteries(PIBs)are emerging as potential next-generation energy storage systems on account of their low cost and high theoretical energy density.Nevertheless,they also face challenges of low specific cap... Potassium ion batteries(PIBs)are emerging as potential next-generation energy storage systems on account of their low cost and high theoretical energy density.Nevertheless,they also face challenges of low specific capacity and suboptimal cycling stability.Herein,we synthesize a cocoon-like P3-type K_(0.5)Mn_(0.7)Ni_(0.3)O_(2)(KMNO)cathode material by a self-template method.The KMNO cocoons possess a hierarchical layered architecture composed of nanoparticle stacking,which can accelerate the transport kinetics of potassium ions,mitigate the stress caused by K^(+)intercalation and deintercalation,and improve structural stability.In addition,Ni can not only alleviate the Jahn-Teller distortion and suppress the phase transition to stabilize the structure,but also act as an electrochemically active element,providing the capacity of two electrons from Ni2+to Ni4+.Combining the advantages of structure and nickel substitution,the P3-type KMNO cocoons are used for electrochemical performance testing of PIB cathodes,delivering an excellent rate capability of 57.1 m A h g^(-1)at 500 m A g^(-1)and a remarkable cycling stability of 77.0%over 300 cycles at 100 m A g^(-1).Impressively,the KMNO cocoons//pitch-derived soft carbon assembled full battery exhibits superior electrochemical performance with a reversible capacity of 79.7 m A h g^(-1)at 50 m A g^(-1).Moreover,ex-situ XRD also further reveals a solid solution phase reaction with a volume change of only 1.46%.This work furnishes a suitable approach to fabricating highperformance layered oxide cathodes for PIBs with outstanding cycling stability and rate capability. 展开更多
关键词 Layered metal oxides Cathode Potassium-ion batteries COCOONS Ex-situ XRD
在线阅读 下载PDF
Coupling Co_(3)[Co(CN)_(6)]_(2) nanocubes with reduced graphene oxide for high-rate and long-cycle-life potassium storage 被引量:2
16
作者 Yifan Xu Yichen Du +4 位作者 Zuyue Yi Zhuangzhuang Zhang Chenling Lai Jiaying Liao Xiaosi Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期593-601,共9页
As one of prussian blue analogues,Co_(3)[Co(CN)_(6)]_(2) has been explored as a promising anode material for potassium-ion batteries(PIBs) owing to its high potassium storage capacity.Unfortunately,Co_(3)[Co(CN)_(6)]_... As one of prussian blue analogues,Co_(3)[Co(CN)_(6)]_(2) has been explored as a promising anode material for potassium-ion batteries(PIBs) owing to its high potassium storage capacity.Unfortunately,Co_(3)[Co(CN)_(6)]_(2) possesses low electronic conductivity and its structure collapses easily during potassiation and depotassiation,resulting in poor rate performance and cyclic stability.To solve these problems,we develop a facile multi-step method to successfully combine uniformCo_(3)[Co(CN)_(6)]_(2) nanocubes with rGO by C-O-Co bonds.As expected,these chemcial bonds shorten the distance betweenCo_(3)[Co(CN)_(6)]_(2) and rGO to the angstrom meter level,which significantly improve the electronic conductivity ofCo_(3)[Co(CN)_(6)]_(2).Besides,the complete encapsulation ofCo_(3)[Co(CN)_(6)]_(2) nanocubes by rGO endows the structure ofCo_(3)[Co(CN)_(6)]_(2) with high stability,thus withstanding repeated insertion/extraction of potassium-ions without visible morphological and structural changes.Benefiting from the abovementioned structural advantages,the CO3 [Co(CN)6]2/rGO nanocomposite exhibits a high reversible capacity of 400.8 mAh g^(-1) at a current density of 0.1 A g^(-1),an exceptional rate capability of 115.5 mAh g^(-1) at 5 A g^(-1), and an ultralong cycle life of 231.9 mAh g^(-1) at 0.1 A g^(-1) after 1000 cycles.Additionally,the effects of different amounts of rGO and different sizes ofCo_(3)[Co(CN)_(6)]_(2) nanocubes on the potassium storage performance are also studied.This work offers an ideal route to significantly enhance the electrochemical properties of prussian blue analogues. 展开更多
关键词 Co_(3)[Co(CN)_(6)]_(2) Reduced graphene oxide Anode Potassium-ion batteries Energy storage
在线阅读 下载PDF
General Preparation and Shaping of Multifunctional Nanowire Aerogels for Pressure/Gas/Photo‑Sensing 被引量:1
17
作者 Xiaoyu Liu Gaoyu Chen +1 位作者 Jianchun Bao Xiangxing Xu 《Advanced Fiber Materials》 SCIE CAS 2022年第1期66-75,共10页
Nanowires(NWs)with ultrahigh aspect ratio are good one-dimensional(1D)nano scafolds for building functional aerogels.However,challenges still remain in exploring methods to prepare shape designable NW aerogels with hi... Nanowires(NWs)with ultrahigh aspect ratio are good one-dimensional(1D)nano scafolds for building functional aerogels.However,challenges still remain in exploring methods to prepare shape designable NW aerogels with high quality,and to reveal multi functions in a single NW aerogel monolith.Here,we report a general camphene freeze-drying method for preparation of various inorganic NW aerogels(e.g,Cu,hydroxylapatite,MnO_(2)and MnOOH NW aerogels),2D graphene oxide nanosheet aerogels,organic polymer aerogels of polystyrene(post-synthesis)and resin(in situ polymerization)aerogels,which can be freely shaped in the frozen monolith stage.The as prepared aerogels have even distributed porosity and smooth surface.Also camphene is cheap and can be efectively recycling collected for reuse.For the Cu NW aerogel with even porosity and low density of 20 mg cm^(−3),multifunctional pressure/gas/photo-sensing was demonstrated.A high pressure sensitivity of 1.7 kPa^(−1)was achieved. 展开更多
关键词 Nanowires AEROGEL CAMPHENE MULTIFUNCTION SENSING
原文传递
Surface carbon layer controllable Ni_(3)Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction 被引量:14
18
作者 Zhijuan Li Xiaodong Wu +5 位作者 Xian Jiang Binbin Shen Zhishun Teng Dongmei Sun Gengtao Fu Yawen Tang 《Advanced Powder Materials》 2022年第2期73-83,共11页
Developing high-efficiency and low-cost catalysts towards oxygen evolution reaction(OER)is extremely important for overall water splitting and rechargeable metal-air batteries.Herein we propose a promising organometal... Developing high-efficiency and low-cost catalysts towards oxygen evolution reaction(OER)is extremely important for overall water splitting and rechargeable metal-air batteries.Herein we propose a promising organometallic coordination polymer(OCP)induced strategy to construct hierarchical N-doped carbon framework with NiFe nanoparticles encapsulated inside(NxFe@N-C)as a highly active and stable OER catalyst.The synthesis of OCP precursor depends on the unique molecular structure of iminodiacetonitrile(IDAN),which can coordinate with metal ions to form Ni2Fe(CN)6 with prussian blue analogs(PBA)structure.Unlike previous PBA-induced methods,the thickness of the carbon layer covering the surface of the metal core can be well controlled during the pyrolysis through adjusting the amount of IDAN,which builds a wonderful bridge for investigating the relationship between carbon layer thickness and catalytic performance.Both the experimental characterizations and theoretical studies validate that a suitable carbon layers thickness leads to optimal OER activity and stability.By optimizing the structure and composition,the optimized Ni_(3)Fe@N-C with hierarchical framework exhibits the low overpotentials(260 mV at 10 mA cm^(-2);320 mV at 50 mA cm^(-2)),improved kinetics(79 mV dec^(-1)),and robust long-term stability,which exceeds those of benchmark RuO_(2). 展开更多
关键词 Iminodiacetonitrile Organometallic coordination polymer Ni_(3)Fe@N-carbon Hierarchical framework Oxygen evolution reaction
在线阅读 下载PDF
Epitaxial growth triggered core-shell Pd@RuP nanorods for high-efficiency electrocatalytic hydrogen evolution
19
作者 Jiaqian Ding Xian Jiang +9 位作者 Caikang Wang Zhuoya Zhu Chang Xu Yi Zhou Xuan Wang Qicheng Liu Zhenyuan Liu Yawen Tang Jun Lin Gengtao Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期510-517,I0011,共9页
Ru with Pt-like hydrogen bond strength,knockdown cost(~1/3 of Pt),and eximious stability is a competitive replacement for Pt-based catalysts towards the hydrogen evolution reaction(HER)in water splitting.The design of... Ru with Pt-like hydrogen bond strength,knockdown cost(~1/3 of Pt),and eximious stability is a competitive replacement for Pt-based catalysts towards the hydrogen evolution reaction(HER)in water splitting.The design of Ru-based catalysts via interface construction,crystal phase control,and specific light element doping to realize the impressive promotion of limited activity and stability remains challenging.Herein,we report the fabrication of Pd@RuP core-shell nanorods(NRs)via an epitaxial growth method,where ultrathin RuP shells extend the face-centered cubic(fcc)crystal structure and(111)plane of the Pd NRs core.Density functio nal theory results confirm that the core-s hell interface engineering and P doping synergistically accelerate electron transfer and moderate the d-band center to generate a suitable affinity for H*,thus optimizing HER kinetics.Compared with Pd@Ru NRs and Pt/C,the Pd@RuP NRs exhibit preferable electrocatalytic stability and superior activity with a low overpotential of 18 mV at 10 mA cm-2in the alkaline HER process.Furthermore,the integrated Pd@RuP//RuO2-based electrolyzer also displays a low operation potential of 1.42 V to acquire 10 mA cm-2,demonstrating great potential for practical water electrolysis.Our work presents an efficient avenue to design Ru-based electrocatalysts via epitaxial growth for extraordinary HER performance. 展开更多
关键词 Pd@RuP Epitaxial growth Interface engineering Hydrogen evolution ELECTROCATALYST
在线阅读 下载PDF
Delocalizedπ_(3)^(6) Bond in OX_(2) (X=Halogen) Molecules
20
作者 Yi-han Tang Pu Yang +3 位作者 Meng-yuan Chen Yu-ru Wang Jia-xin Wang Jia-wei Xu 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第3期542-550,I0003,共10页
OX_(2)(X=halogen)molecules was studied theoretically.Calculation results show that delocalizedπ_(3)^(6) bonds exist in their electronic structures and O atoms adopt the sp^(2) type of hybridization,which violates the... OX_(2)(X=halogen)molecules was studied theoretically.Calculation results show that delocalizedπ_(3)^(6) bonds exist in their electronic structures and O atoms adopt the sp^(2) type of hybridization,which violates the prediction of the valence shell electron pair repulsion theory of sp^(3) type.Delocalization stabilization energy is proposed to measure the contribution of delocalizedπ_(3)^(6) bond to energy decrease and proves to bring extra-stability to the molecule.These phenomena can be summarized as a kind of coordinating effect. 展开更多
关键词 Theoretical and computational chemistry Valence shell electron pair repulsion theory Delocalizedπbond Delocalization stabilization energy Dihalogen monoxide
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部