Aortic dissection(AD)is a kind of acute and rapidly progressing cardiovascular disease.In this work,we build a CTA image library with 88 CT cases,43 cases of aortic dissection and 45 cases of health.An aortic dissecti...Aortic dissection(AD)is a kind of acute and rapidly progressing cardiovascular disease.In this work,we build a CTA image library with 88 CT cases,43 cases of aortic dissection and 45 cases of health.An aortic dissection detection method based on CTA images is proposed.ROI is extracted based on binarization and morphology opening operation.The deep learning networks(InceptionV3,ResNet50,and DenseNet)are applied after the preprocessing of the datasets.Recall,F1-score,Matthews correlation coefficient(MCC)and other performance indexes are investigated.It is shown that the deep learning methods have much better performance than the traditional method.And among those deep learning methods,DenseNet121 can exceed other networks such as ResNet50 and InceptionV3.展开更多
The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,whi...The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019.展开更多
A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajec...A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design.展开更多
Crimes are expected to rise with an increase in population and the rising gap between society’s income levels.Crimes contribute to a significant portion of the socioeconomic loss to any society,not only through its i...Crimes are expected to rise with an increase in population and the rising gap between society’s income levels.Crimes contribute to a significant portion of the socioeconomic loss to any society,not only through its indirect damage to the social fabric and peace but also the more direct negative impacts on the economy,social parameters,and reputation of a nation.Policing and other preventive resources are limited and have to be utilized.The conventional methods are being superseded by more modern approaches of machine learning algorithms capable of making predictions where the relationships between the features and the outcomes are complex.Making it possible for such algorithms to provide indicators of specific areas that may become criminal hot-spots.These predictions can be used by policymakers and police personals alike to make effective and informed strategies that can curtail criminal activities and contribute to the nation’s development.This paper aims to predict factors that most affected crimes in Saudi Arabia by developing a machine learning model to predict an acceptable output value.Our results show that FAMD as features selection methods showed more accuracy on machine learning classifiers than the PCA method.The naïve Bayes classifier performs better than other classifiers on both features selections methods with an accuracy of 97.53%for FAMD,and PCA equals to 97.10%.展开更多
Novel Coronavirus-19(COVID-19)is a newer type of coronavirus that has not been formally detected in humans.It is established that this disease often affects people of different age groups,particularly those with body ...Novel Coronavirus-19(COVID-19)is a newer type of coronavirus that has not been formally detected in humans.It is established that this disease often affects people of different age groups,particularly those with body disorders,blood pressure,diabetes,heart problems,or weakened immune systems.The epidemic of this infection has recently had a huge impact on people around the globe with rising mortality rates.Rising levels of mortality are attributed to their transmitting behavior through physical contact between humans.It is extremely necessary to monitor the transmission of the infection and also to anticipate the early stages of the disease in such a way that the appropriate timing of effective precautionary measures can be taken.The latest global coronavirus epidemic(COVID-19)has brought new challenges to the scientific community.Artificial Intelligence(AI)-motivated methodologies may be useful in predicting the conditions,consequences,and implications of such an outbreak.These forecasts may help to monitor and prevent the spread of these outbreaks.This article proposes a predictive framework incorporating Support Vector Machines(SVM)in the forecasting of a potential outbreak of COVID-19.The findings indicate that the suggested system outperforms cutting-edge approaches.The method could be used to predict the long-term spread of such an outbreak so that we can implement proactive measures in advance.The findings of the analyses indicate that the SVM forecasting framework outperformed the Neural Network methods in terms of accuracy and computational complexity.The proposed SVM system model exhibits 98.88%and 96.79%result in terms of accuracy during training and validation respectively.展开更多
The global view of firewall policy conflict is important for administrators to optimize the policy.It has been lack of appropriate firewall policy global conflict analysis,existing methods focus on local conflict dete...The global view of firewall policy conflict is important for administrators to optimize the policy.It has been lack of appropriate firewall policy global conflict analysis,existing methods focus on local conflict detection.We research the global conflict detection algorithm in this paper.We presented a semantic model that captures more complete classifications of the policy using knowledge concept in rough set.Based on this model,we presented the global conflict formal model,and represent it with OBDD(Ordered Binary Decision Diagram).Then we developed GFPCDA(Global Firewall Policy Conflict Detection Algorithm) algorithm to detect global conflict.In experiment,we evaluated the usability of our semantic model by eliminating the false positives and false negatives caused by incomplete policy semantic model,of a classical algorithm.We compared this algorithm with GFPCDA algorithm.The results show that GFPCDA detects conflicts more precisely and independently,and has better performance.展开更多
Energy band gap of titanium dioxide(TiO_2) semiconductor plays significant roles in many practical applications of the semiconductor and determines its appropriateness in technological and industrial applications such...Energy band gap of titanium dioxide(TiO_2) semiconductor plays significant roles in many practical applications of the semiconductor and determines its appropriateness in technological and industrial applications such as UV absorption, pigment,photo-catalysis, pollution control systems and solar cells among others. Substitution of impurities into crystal lattice structure is the most commonly used method of tuning the band gap of TiO_2 for specific application and eventually leads to lattice distortion. This work utilizes the distortion in the lattice structure to estimate the band gap of doped TiO_2, for the first time, through hybridization of a particle swarm optimization algorithm(PSO) with a support vector regression(SVR) algorithm for developing a PSO-SVR model. The precision and accuracy of the developed PSO-SVR model was further justified by applying the model for estimating the effect of cobalt-sulfur co-doping, nickel-iodine co-doping, tungsten and indium doping on the band gap of TiO_2 and excellent agreement with the experimentally reported values was achieved. Practical implementation of the proposed PSO-SVR model would further widen the applications of the semiconductor and reduce the experimental stress involved in band gap determination of TiO_2.展开更多
Social media platforms have proven to be effective for information gathering during emergency events caused by natural or human-made disasters.Emergency response authorities,law enforcement agencies,and the public can...Social media platforms have proven to be effective for information gathering during emergency events caused by natural or human-made disasters.Emergency response authorities,law enforcement agencies,and the public can use this information to gain situational awareness and improve disaster response.In case of emergencies,rapid responses are needed to address victims’requests for help.The research community has developed many social media platforms and used them effectively for emergency response and coordination in the past.However,most of the present deployments of platforms in crisis management are not automated,and their operational success largely depends on experts who analyze the information manually and coordinate with relevant humanitarian agencies or law enforcement authorities to initiate emergency response operations.The seamless integration of automatically identifying types of urgent needs from millions of posts and delivery of relevant information to the appropriate agency for timely response has become essential.This research project aims to develop a generalized Information Technology(IT)solution for emergency response and disaster management by integrating social media data as its core component.In this paper,we focused on text analysis techniques which can help the emergency response authorities to filter through the sheer amount of information gathered automatically for supporting their relief efforts.More specifically,we applied state-of-the-art Natural Language Processing(NLP),Machine Learning(ML),and Deep Learning(DL)techniques ranging from unsupervised to supervised learning for an in-depth analysis of social media data for the purpose of extracting real-time information on a critical event to facilitate emergency response in a crisis.As a proof of concept,a case study on the COVID-19 pandemic on the data collected from Twitter is presented,providing evidence that the scientific and operational goals have been achieved.展开更多
In the current era of information technology,students need to learn modern programming languages efficiently.The art of teaching/learning program-ming requires many logical and conceptual skills.So it’s a challenging ...In the current era of information technology,students need to learn modern programming languages efficiently.The art of teaching/learning program-ming requires many logical and conceptual skills.So it’s a challenging task for the instructors/learners to teach/learn these programming languages effectively and efficiently.Mind mapping is a useful visual tool for establishing ideas and connecting them to solve problems.This research proposed an effective way to teach programming languages through visual tools.This experimental study uses a mind mapping tool to teach two programming environments:Text-based Programming and Blocks-based Programming.We performed the experiments with one hundred and sixty undergraduate students of two public sector universities in the Asia Pacific region.Four different instructional approaches,including block-based language(BBL),text-based languages(TBL),mind map with text-based language(MMTBL)and mind mapping with block-based(MMBBL)are used for this purpose.The results show that instructional approaches using a mind mapping tool to help students solve given tasks in their critical thinking are more effective than other instructional techniques.展开更多
Maritime transportation,a cornerstone of global trade,faces increasing safety challenges due to growing sea traffic volumes.This study proposes a novel approach to vessel trajectory prediction utilizing Automatic Iden...Maritime transportation,a cornerstone of global trade,faces increasing safety challenges due to growing sea traffic volumes.This study proposes a novel approach to vessel trajectory prediction utilizing Automatic Identification System(AIS)data and advanced deep learning models,including Long Short-Term Memory(LSTM),Gated Recurrent Unit(GRU),Bidirectional LSTM(DBLSTM),Simple Recurrent Neural Network(SimpleRNN),and Kalman Filtering.The research implemented rigorous AIS data preprocessing,encompassing record deduplication,noise elimination,stationary simplification,and removal of insignificant trajectories.Models were trained using key navigational parameters:latitude,longitude,speed,and heading.Spatiotemporal aware processing through trajectory segmentation and topological data analysis(TDA)was employed to capture dynamic patterns.Validation using a three-month AIS dataset demonstrated significant improvements in prediction accuracy.The GRU model exhibited superior performance,achieving training losses of 0.0020(Mean Squared Error,MSE)and 0.0334(Mean Absolute Error,MAE),with validation losses of 0.0708(MSE)and 0.1720(MAE).The LSTM model showed comparable efficacy,with training losses of 0.0011(MSE)and 0.0258(MAE),and validation losses of 0.2290(MSE)and 0.2652(MAE).Both models demonstrated reductions in training and validation losses,measured by MAE,MSE,Average Displacement Error(ADE),and Final Displacement Error(FDE).This research underscores the potential of advanced deep learning models in enhancing maritime safety through more accurate trajectory predictions,contributing significantly to the development of robust,intelligent navigation systems for the maritime industry.展开更多
Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods...Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly.展开更多
Face recognition (FR) technology has numerous applications in artificial intelligence including biometrics, security,authentication, law enforcement, and surveillance. Deep learning (DL) models, notably convolutional ...Face recognition (FR) technology has numerous applications in artificial intelligence including biometrics, security,authentication, law enforcement, and surveillance. Deep learning (DL) models, notably convolutional neuralnetworks (CNNs), have shown promising results in the field of FR. However CNNs are easily fooled since theydo not encode position and orientation correlations between features. Hinton et al. envisioned Capsule Networksas a more robust design capable of retaining pose information and spatial correlations to recognize objects morelike the brain does. Lower-level capsules hold 8-dimensional vectors of attributes like position, hue, texture, andso on, which are routed to higher-level capsules via a new routing by agreement algorithm. This provides capsulenetworks with viewpoint invariance, which has previously evaded CNNs. This research presents a FR model basedon capsule networks that was tested using the LFW dataset, COMSATS face dataset, and own acquired photos usingcameras measuring 128 × 128 pixels, 40 × 40 pixels, and 30 × 30 pixels. The trained model outperforms state-ofthe-art algorithms, achieving 95.82% test accuracy and performing well on unseen faces that have been blurred orrotated. Additionally, the suggested model outperformed the recently released approaches on the COMSATS facedataset, achieving a high accuracy of 92.47%. Based on the results of this research as well as previous results, capsulenetworks perform better than deeper CNNs on unobserved altered data because of their special equivarianceproperties.展开更多
Serial remote sensing images offer a valuable means of tracking the evolutionary changes and growth of a specific geographical area over time.Although the original images may provide limited insights,they harbor consi...Serial remote sensing images offer a valuable means of tracking the evolutionary changes and growth of a specific geographical area over time.Although the original images may provide limited insights,they harbor considerable potential for identifying clusters and patterns.The aggregation of these serial remote sensing images(SRSI)becomes increasingly viable as distinct patterns emerge in diverse scenarios,such as suburbanization,the expansion of native flora,and agricultural activities.In a novel approach,we propose an innovative method for extracting sequential patterns by combining Ant Colony Optimization(ACD)and Empirical Mode Decomposition(EMD).This integration of the newly developed EMD and ACO techniques proves remarkably effective in identifying the most significant characteristic features within serial remote sensing images,guided by specific criteria.Our findings highlight a substantial improvement in the efficiency of sequential pattern mining through the application of this unique hybrid method,seamlessly integrating EMD and ACO for feature selection.This study exposes the potential of our innovative methodology,particularly in the realms of urbanization,native vegetation expansion,and agricultural activities.展开更多
Healthcare polypharmacy is routinely used to treat numerous conditions;however,it often leads to unanticipated bad consequences owing to complicated medication interactions.This paper provides a graph convolutional ne...Healthcare polypharmacy is routinely used to treat numerous conditions;however,it often leads to unanticipated bad consequences owing to complicated medication interactions.This paper provides a graph convolutional network(GCN)-based model for identifying adverse effects in polypharmacy by integrating pharmaceutical data from electronic health records(EHR).The GCN framework analyzes the complicated links between drugs to forecast the possibility of harmful drug interactions.Experimental assessments reveal that the proposed GCN model surpasses existing machine learning approaches,reaching an accuracy(ACC)of 91%,an area under the receiver operating characteristic curve(AUC)of 0.88,and an F1-score of 0.83.Furthermore,the overall accuracy of the model achieved 98.47%.These findings imply that the GCN model is helpful for monitoring individuals receiving polypharmacy.Future research should concentrate on improving the model and extending datasets for therapeutic applications.展开更多
Machine learning(ML)and data mining are used in various fields such as data analysis,prediction,image processing and especially in healthcare.Researchers in the past decade have focused on applying ML and data mining ...Machine learning(ML)and data mining are used in various fields such as data analysis,prediction,image processing and especially in healthcare.Researchers in the past decade have focused on applying ML and data mining to generate conclusions from historical data in order to improve healthcare systems by making predictions about the results.Using ML algorithms,researchers have developed applications for decision support,analyzed clinical aspects,extracted informative information from historical data,predicted the outcomes and categorized diseases which help physicians make better decisions.It is observed that there is a huge difference between women depending on the region and their social lives.Due to these differences,scholars have been encouraged to conduct studies at a local level in order to better understand those factors that affect maternal health and the expected child.In this study,the ensemble modeling technique is applied to classify birth outcomes based on either cesarean section(C-Section)or normal delivery.A voting ensemble model for the classification of a birth dataset was made by using a Random Forest(RF),Gradient Boosting Classifier,Extra Trees Classifier and Bagging Classifier as base learners.It is observed that the voting ensemble modal of proposed classifiers provides the best accuracy,i.e.,94.78%,as compared to the individual classifiers.ML algorithms are more accurate due to ensemble models,which reduce variance and classification errors.It is reported that when a suitable classification model has been developed for birth classification,decision support systems can be created to enable clinicians to gain in-depth insights into the patterns in the datasets.Developing such a system will not only allow health organizations to improve maternal health assessment processes,but also open doors for interdisciplinary research in two different fields in the region.展开更多
The existing safety helmet detection methods are mainly based on one-stage object detection algorithms with high detection speed to reach the real-time detection requirements,but they can’t accurately detect small ob...The existing safety helmet detection methods are mainly based on one-stage object detection algorithms with high detection speed to reach the real-time detection requirements,but they can’t accurately detect small objects and objects with obstructions.Therefore,we propose a helmet detection algorithm based on the attention mechanism(AT-YOLO).First of all,a channel attention module is added to the YOLOv3 backbone network,which can adaptively calibrate the channel features of the direction to improve the feature utilization,and a spatial attention module is added to the neck of the YOLOv3 network to capture the correlation between any positions in the feature map so that to increase the receptive field of the network.Secondly,we use DIoU(Distance Intersection over Union)bounding box regression loss function,it not only improving the measurement of bounding box regression loss but also increases the normalized distance loss between the prediction boxes and the target boxes,which makes the network more accurate in detecting small objects and faster in convergence.Finally,we explore the training strategy of the network model,which improves network performance without increasing the inference cost.Experiments show that the mAP of the proposed method reaches 96.5%,and the detection speed can reach 27 fps.Compared with other existing methods,it has better performance in detection accuracy and speed.展开更多
Epilepsy is a type of brain disorder that causes recurrent seizures.It is the second most common neurological disease after Alzheimer’s.The effects of epilepsy in children are serious,since it causes a slower growth ...Epilepsy is a type of brain disorder that causes recurrent seizures.It is the second most common neurological disease after Alzheimer’s.The effects of epilepsy in children are serious,since it causes a slower growth rate and a failure to develop certain skills.In the medical field,specialists record brain activity using an Electroencephalogram(EEG)to observe the epileptic seizures.The detection of these seizures is performed by specialists,but the results might not be accurate due to human errors;therefore,automated detection of epileptic pediatric seizures might be the optimal solution.This paper investigates the detection of epileptic seizures by applying supervised machine learning techniques.The techniques applied on the data of patients with ages seven years and below from children’s hospital boston massachusetts institute of technology(CHB-MIT)scalp EEG database of epileptic pediatric signals.A group of Naïve Bayes(NB),Support vector machine(SVM),Logistic regression(LR),k-nearest neighbor(KNN),Linear discernment(LD),Decision tree(DT),and ensemble learning methods were applied to the classification process.The results demonstrated the outperformance of the present study by achieving 100%for all parameters using the Ensemble learning model in contrast to state-of-the-art studies in the literature.Similarly,the SVM model achieved performance with 98.3%for sensitivity,97.7%for specificity,and 98%for accuracy.The results of the LD and LR models reveal the lower performance i.e.,the sensitivity at 66.9%–68.9%,specificity at 73.5%–77.1%,and accuracy at 70.2%–73%.展开更多
One of the most complex tasks for computer-aided diagnosis(Intelligent decision support system)is the segmentation of lesions.Thus,this study proposes a new fully automated method for the segmentation of ovarian and b...One of the most complex tasks for computer-aided diagnosis(Intelligent decision support system)is the segmentation of lesions.Thus,this study proposes a new fully automated method for the segmentation of ovarian and breast ultrasound images.The main contributions of this research is the development of a novel Viola–James model capable of segmenting the ultrasound images of breast and ovarian cancer cases.In addition,proposed an approach that can efficiently generate region-of-interest(ROI)and new features that can be used in characterizing lesion boundaries.This study uses two databases in training and testing the proposed segmentation approach.The breast cancer database contains 250 images,while that of the ovarian tumor has 100 images obtained from several hospitals in Iraq.Results of the experiments showed that the proposed approach demonstrates better performance compared with those of other segmentation methods used for segmenting breast and ovarian ultrasound images.The segmentation result of the proposed system compared with the other existing techniques in the breast cancer data set was 78.8%.By contrast,the segmentation result of the proposed system in the ovarian tumor data set was 79.2%.In the classification results,we achieved 95.43%accuracy,92.20%sensitivity,and 97.5%specificity when we used the breast cancer data set.For the ovarian tumor data set,we achieved 94.84%accuracy,96.96%sensitivity,and 90.32%specificity.展开更多
In recent years,the infrastructure,instruments,and resources of network systems are becoming more complex and heterogeneous,with the rapid development of current internet and mobile communication technologies.In order...In recent years,the infrastructure,instruments,and resources of network systems are becoming more complex and heterogeneous,with the rapid development of current internet and mobile communication technologies.In order to efficaciously prepare,control,hold and optimize networking systems,greater intelligence needs to be deployed.However,due to the inherently dispensed characteristic of conventional networks,Machine Learning(ML)techniques are hard to implement and deployed to govern and operate networks.Software-Defined Networking(SDN)brings us new possibilities to offer intelligence in the networks.SDN’s characteristics(e.g.,logically centralized control,global network view,software-based site visitor analysis,and dynamic updating of forwarding rules)make it simpler to apply machine learning strategies.Various perspectives of fiber-optic communications including fiber nonlinearity coverage,optical performance checking,cognitive shortcoming detection/anticipation,and arranging and improvement of softwaredefined networks are examined in Machine Learning(ML)applications.This research paper has presented an imaginative framework concept called Intelligent Software Defined Network(ISDN)for Cognitive Routing Optimization(CRO)using Deep Extreme Learning Machine(DELM)approach(ISDN-CRO-DELM)in light of the new challenges in the development and operation of communication systems,and capturing motivation from how living creatures deal with difficulty and usability.The proposed methodology develops around the planned applications of progressive DELM methods and,specifically,probabilistic generative models for framework wide learning,demonstrating,improvement,and information description.Furthermore,ISDN-CRO-DELM,suggest to integrate this learning framework with the ISDN for CRO and reconfiguration approaches at the system level.MATLAB 2019a is used for DELM simulation and superior results show the effectiveness of the proposed framework.展开更多
Fake reviews,also known as deceptive opinions,are used to mislead people and have gained more importance recently.This is due to the rapid increase in online marketing transactions,such as selling and purchasing.E-com...Fake reviews,also known as deceptive opinions,are used to mislead people and have gained more importance recently.This is due to the rapid increase in online marketing transactions,such as selling and purchasing.E-commerce provides a facility for customers to post reviews and comment about the product or service when purchased.New customers usually go through the posted reviews or comments on the website before making a purchase decision.However,the current challenge is how new individuals can distinguish truthful reviews from fake ones,which later deceives customers,inflicts losses,and tarnishes the reputation of companies.The present paper attempts to develop an intelligent system that can detect fake reviews on ecommerce platforms using n-grams of the review text and sentiment scores given by the reviewer.The proposed methodology adopted in this study used a standard fake hotel review dataset for experimenting and data preprocessing methods and a term frequency-Inverse document frequency(TF-IDF)approach for extracting features and their representation.For detection and classification,n-grams of review texts were inputted into the constructed models to be classified as fake or truthful.However,the experiments were carried out using four different supervised machine-learning techniques and were trained and tested on a dataset collected from the Trip Advisor website.The classification results of these experiments showed that na飗e Bayes(NB),support vector machine(SVM),adaptive boosting(AB),and random forest(RF)received 88%,93%,94%,and 95%,respectively,based on testing accuracy and tje F1-score.The obtained results were compared with existing works that used the same dataset,and the proposed methods outperformed the comparable methods in terms of accuracy.展开更多
基金This work is supported by the National Natural Science Foundation of China(No.61772561)the National Natural Science Foundation of Hunan(No.2019JJ50866)+1 种基金the Key Research&Development Plan of Hunan Province(No.2018NK2012)the Postgraduate Science and Technology Innovation Foundation of Central South University of Forestry and Technology(No.20183034).
文摘Aortic dissection(AD)is a kind of acute and rapidly progressing cardiovascular disease.In this work,we build a CTA image library with 88 CT cases,43 cases of aortic dissection and 45 cases of health.An aortic dissection detection method based on CTA images is proposed.ROI is extracted based on binarization and morphology opening operation.The deep learning networks(InceptionV3,ResNet50,and DenseNet)are applied after the preprocessing of the datasets.Recall,F1-score,Matthews correlation coefficient(MCC)and other performance indexes are investigated.It is shown that the deep learning methods have much better performance than the traditional method.And among those deep learning methods,DenseNet121 can exceed other networks such as ResNet50 and InceptionV3.
文摘The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019.
基金Projects(90820302, 60805027, 61175064) supported by the National Natural Science Foundation of ChinaProject(2011ssxt231) supported by the Master Degree Thesis Innovation Project Foundation of Central South University, China+1 种基金Project(200805330005) supported by the Research Fund for the Doctoral Program of Higher Education, ChinaProject(2011FJ4043) supported by the Academician Foundation of Hunan Province, China
文摘A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design.
文摘Crimes are expected to rise with an increase in population and the rising gap between society’s income levels.Crimes contribute to a significant portion of the socioeconomic loss to any society,not only through its indirect damage to the social fabric and peace but also the more direct negative impacts on the economy,social parameters,and reputation of a nation.Policing and other preventive resources are limited and have to be utilized.The conventional methods are being superseded by more modern approaches of machine learning algorithms capable of making predictions where the relationships between the features and the outcomes are complex.Making it possible for such algorithms to provide indicators of specific areas that may become criminal hot-spots.These predictions can be used by policymakers and police personals alike to make effective and informed strategies that can curtail criminal activities and contribute to the nation’s development.This paper aims to predict factors that most affected crimes in Saudi Arabia by developing a machine learning model to predict an acceptable output value.Our results show that FAMD as features selection methods showed more accuracy on machine learning classifiers than the PCA method.The naïve Bayes classifier performs better than other classifiers on both features selections methods with an accuracy of 97.53%for FAMD,and PCA equals to 97.10%.
文摘Novel Coronavirus-19(COVID-19)is a newer type of coronavirus that has not been formally detected in humans.It is established that this disease often affects people of different age groups,particularly those with body disorders,blood pressure,diabetes,heart problems,or weakened immune systems.The epidemic of this infection has recently had a huge impact on people around the globe with rising mortality rates.Rising levels of mortality are attributed to their transmitting behavior through physical contact between humans.It is extremely necessary to monitor the transmission of the infection and also to anticipate the early stages of the disease in such a way that the appropriate timing of effective precautionary measures can be taken.The latest global coronavirus epidemic(COVID-19)has brought new challenges to the scientific community.Artificial Intelligence(AI)-motivated methodologies may be useful in predicting the conditions,consequences,and implications of such an outbreak.These forecasts may help to monitor and prevent the spread of these outbreaks.This article proposes a predictive framework incorporating Support Vector Machines(SVM)in the forecasting of a potential outbreak of COVID-19.The findings indicate that the suggested system outperforms cutting-edge approaches.The method could be used to predict the long-term spread of such an outbreak so that we can implement proactive measures in advance.The findings of the analyses indicate that the SVM forecasting framework outperformed the Neural Network methods in terms of accuracy and computational complexity.The proposed SVM system model exhibits 98.88%and 96.79%result in terms of accuracy during training and validation respectively.
基金supported by the National Nature Science Foundation of China under Grant No.61170295 the Project of National ministry under Grant No.A2120110006+2 种基金 the Co-Funding Project of Beijing Municipal Education Commission under Grant No.JD100060630 the Beijing Education Committee General Program under Grant No. KM201211232010 the National Nature Science Foundation of China under Grant NO. 61370065
文摘The global view of firewall policy conflict is important for administrators to optimize the policy.It has been lack of appropriate firewall policy global conflict analysis,existing methods focus on local conflict detection.We research the global conflict detection algorithm in this paper.We presented a semantic model that captures more complete classifications of the policy using knowledge concept in rough set.Based on this model,we presented the global conflict formal model,and represent it with OBDD(Ordered Binary Decision Diagram).Then we developed GFPCDA(Global Firewall Policy Conflict Detection Algorithm) algorithm to detect global conflict.In experiment,we evaluated the usability of our semantic model by eliminating the false positives and false negatives caused by incomplete policy semantic model,of a classical algorithm.We compared this algorithm with GFPCDA algorithm.The results show that GFPCDA detects conflicts more precisely and independently,and has better performance.
基金The support of King Fahd University of Petroleum and Minerals
文摘Energy band gap of titanium dioxide(TiO_2) semiconductor plays significant roles in many practical applications of the semiconductor and determines its appropriateness in technological and industrial applications such as UV absorption, pigment,photo-catalysis, pollution control systems and solar cells among others. Substitution of impurities into crystal lattice structure is the most commonly used method of tuning the band gap of TiO_2 for specific application and eventually leads to lattice distortion. This work utilizes the distortion in the lattice structure to estimate the band gap of doped TiO_2, for the first time, through hybridization of a particle swarm optimization algorithm(PSO) with a support vector regression(SVR) algorithm for developing a PSO-SVR model. The precision and accuracy of the developed PSO-SVR model was further justified by applying the model for estimating the effect of cobalt-sulfur co-doping, nickel-iodine co-doping, tungsten and indium doping on the band gap of TiO_2 and excellent agreement with the experimentally reported values was achieved. Practical implementation of the proposed PSO-SVR model would further widen the applications of the semiconductor and reduce the experimental stress involved in band gap determination of TiO_2.
基金The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number 523.
文摘Social media platforms have proven to be effective for information gathering during emergency events caused by natural or human-made disasters.Emergency response authorities,law enforcement agencies,and the public can use this information to gain situational awareness and improve disaster response.In case of emergencies,rapid responses are needed to address victims’requests for help.The research community has developed many social media platforms and used them effectively for emergency response and coordination in the past.However,most of the present deployments of platforms in crisis management are not automated,and their operational success largely depends on experts who analyze the information manually and coordinate with relevant humanitarian agencies or law enforcement authorities to initiate emergency response operations.The seamless integration of automatically identifying types of urgent needs from millions of posts and delivery of relevant information to the appropriate agency for timely response has become essential.This research project aims to develop a generalized Information Technology(IT)solution for emergency response and disaster management by integrating social media data as its core component.In this paper,we focused on text analysis techniques which can help the emergency response authorities to filter through the sheer amount of information gathered automatically for supporting their relief efforts.More specifically,we applied state-of-the-art Natural Language Processing(NLP),Machine Learning(ML),and Deep Learning(DL)techniques ranging from unsupervised to supervised learning for an in-depth analysis of social media data for the purpose of extracting real-time information on a critical event to facilitate emergency response in a crisis.As a proof of concept,a case study on the COVID-19 pandemic on the data collected from Twitter is presented,providing evidence that the scientific and operational goals have been achieved.
文摘In the current era of information technology,students need to learn modern programming languages efficiently.The art of teaching/learning program-ming requires many logical and conceptual skills.So it’s a challenging task for the instructors/learners to teach/learn these programming languages effectively and efficiently.Mind mapping is a useful visual tool for establishing ideas and connecting them to solve problems.This research proposed an effective way to teach programming languages through visual tools.This experimental study uses a mind mapping tool to teach two programming environments:Text-based Programming and Blocks-based Programming.We performed the experiments with one hundred and sixty undergraduate students of two public sector universities in the Asia Pacific region.Four different instructional approaches,including block-based language(BBL),text-based languages(TBL),mind map with text-based language(MMTBL)and mind mapping with block-based(MMBBL)are used for this purpose.The results show that instructional approaches using a mind mapping tool to help students solve given tasks in their critical thinking are more effective than other instructional techniques.
基金the“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-004)Institute of Information and Communications Technology Planning and Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155857,Artificial Intelligence Convergence Innovation Human Resources Development(Chungnam National University)).
文摘Maritime transportation,a cornerstone of global trade,faces increasing safety challenges due to growing sea traffic volumes.This study proposes a novel approach to vessel trajectory prediction utilizing Automatic Identification System(AIS)data and advanced deep learning models,including Long Short-Term Memory(LSTM),Gated Recurrent Unit(GRU),Bidirectional LSTM(DBLSTM),Simple Recurrent Neural Network(SimpleRNN),and Kalman Filtering.The research implemented rigorous AIS data preprocessing,encompassing record deduplication,noise elimination,stationary simplification,and removal of insignificant trajectories.Models were trained using key navigational parameters:latitude,longitude,speed,and heading.Spatiotemporal aware processing through trajectory segmentation and topological data analysis(TDA)was employed to capture dynamic patterns.Validation using a three-month AIS dataset demonstrated significant improvements in prediction accuracy.The GRU model exhibited superior performance,achieving training losses of 0.0020(Mean Squared Error,MSE)and 0.0334(Mean Absolute Error,MAE),with validation losses of 0.0708(MSE)and 0.1720(MAE).The LSTM model showed comparable efficacy,with training losses of 0.0011(MSE)and 0.0258(MAE),and validation losses of 0.2290(MSE)and 0.2652(MAE).Both models demonstrated reductions in training and validation losses,measured by MAE,MSE,Average Displacement Error(ADE),and Final Displacement Error(FDE).This research underscores the potential of advanced deep learning models in enhancing maritime safety through more accurate trajectory predictions,contributing significantly to the development of robust,intelligent navigation systems for the maritime industry.
基金Ministry of Education,Youth and Sports of the Chezk Republic,Grant/Award Numbers:SP2023/039,SP2023/042the European Union under the REFRESH,Grant/Award Number:CZ.10.03.01/00/22_003/0000048。
文摘Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly.
基金Princess Nourah bint Abdulrahman University Riyadh,Saudi Arabia with Researchers Supporting Project Number:PNURSP2024R234.
文摘Face recognition (FR) technology has numerous applications in artificial intelligence including biometrics, security,authentication, law enforcement, and surveillance. Deep learning (DL) models, notably convolutional neuralnetworks (CNNs), have shown promising results in the field of FR. However CNNs are easily fooled since theydo not encode position and orientation correlations between features. Hinton et al. envisioned Capsule Networksas a more robust design capable of retaining pose information and spatial correlations to recognize objects morelike the brain does. Lower-level capsules hold 8-dimensional vectors of attributes like position, hue, texture, andso on, which are routed to higher-level capsules via a new routing by agreement algorithm. This provides capsulenetworks with viewpoint invariance, which has previously evaded CNNs. This research presents a FR model basedon capsule networks that was tested using the LFW dataset, COMSATS face dataset, and own acquired photos usingcameras measuring 128 × 128 pixels, 40 × 40 pixels, and 30 × 30 pixels. The trained model outperforms state-ofthe-art algorithms, achieving 95.82% test accuracy and performing well on unseen faces that have been blurred orrotated. Additionally, the suggested model outperformed the recently released approaches on the COMSATS facedataset, achieving a high accuracy of 92.47%. Based on the results of this research as well as previous results, capsulenetworks perform better than deeper CNNs on unobserved altered data because of their special equivarianceproperties.
文摘Serial remote sensing images offer a valuable means of tracking the evolutionary changes and growth of a specific geographical area over time.Although the original images may provide limited insights,they harbor considerable potential for identifying clusters and patterns.The aggregation of these serial remote sensing images(SRSI)becomes increasingly viable as distinct patterns emerge in diverse scenarios,such as suburbanization,the expansion of native flora,and agricultural activities.In a novel approach,we propose an innovative method for extracting sequential patterns by combining Ant Colony Optimization(ACD)and Empirical Mode Decomposition(EMD).This integration of the newly developed EMD and ACO techniques proves remarkably effective in identifying the most significant characteristic features within serial remote sensing images,guided by specific criteria.Our findings highlight a substantial improvement in the efficiency of sequential pattern mining through the application of this unique hybrid method,seamlessly integrating EMD and ACO for feature selection.This study exposes the potential of our innovative methodology,particularly in the realms of urbanization,native vegetation expansion,and agricultural activities.
文摘Healthcare polypharmacy is routinely used to treat numerous conditions;however,it often leads to unanticipated bad consequences owing to complicated medication interactions.This paper provides a graph convolutional network(GCN)-based model for identifying adverse effects in polypharmacy by integrating pharmaceutical data from electronic health records(EHR).The GCN framework analyzes the complicated links between drugs to forecast the possibility of harmful drug interactions.Experimental assessments reveal that the proposed GCN model surpasses existing machine learning approaches,reaching an accuracy(ACC)of 91%,an area under the receiver operating characteristic curve(AUC)of 0.88,and an F1-score of 0.83.Furthermore,the overall accuracy of the model achieved 98.47%.These findings imply that the GCN model is helpful for monitoring individuals receiving polypharmacy.Future research should concentrate on improving the model and extending datasets for therapeutic applications.
基金Natural Sciences and Engineering Research Council of Canada(NSERC)and New Brunswick Innovation Foundation(NBIF)for the financial support of the global project.These granting agencies did not contribute in the design of the study and collection,analysis,and interpretation of data。
文摘Machine learning(ML)and data mining are used in various fields such as data analysis,prediction,image processing and especially in healthcare.Researchers in the past decade have focused on applying ML and data mining to generate conclusions from historical data in order to improve healthcare systems by making predictions about the results.Using ML algorithms,researchers have developed applications for decision support,analyzed clinical aspects,extracted informative information from historical data,predicted the outcomes and categorized diseases which help physicians make better decisions.It is observed that there is a huge difference between women depending on the region and their social lives.Due to these differences,scholars have been encouraged to conduct studies at a local level in order to better understand those factors that affect maternal health and the expected child.In this study,the ensemble modeling technique is applied to classify birth outcomes based on either cesarean section(C-Section)or normal delivery.A voting ensemble model for the classification of a birth dataset was made by using a Random Forest(RF),Gradient Boosting Classifier,Extra Trees Classifier and Bagging Classifier as base learners.It is observed that the voting ensemble modal of proposed classifiers provides the best accuracy,i.e.,94.78%,as compared to the individual classifiers.ML algorithms are more accurate due to ensemble models,which reduce variance and classification errors.It is reported that when a suitable classification model has been developed for birth classification,decision support systems can be created to enable clinicians to gain in-depth insights into the patterns in the datasets.Developing such a system will not only allow health organizations to improve maternal health assessment processes,but also open doors for interdisciplinary research in two different fields in the region.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61772561,author J.Q,http://www.nsfc.gov.cn/in part by the Degree&Postgraduate Education Reform Project of Hunan Province under Grant 2019JGYB154,author J.Q,http://xwb.gov.hnedu.cn/+6 种基金in part by the Postgraduate Excellent teaching team Project of Hunan Province under Grant[2019]370-133,author J.Q,http://xwb.gov.hnedu.cn/in part by the Science Research Projects of Hunan Provincial Education Department under Grant 18A174,author X.X,http://kxjsc.gov.hnedu.cn/in part by the Science Research Projects of Hunan Provincial Education Department under Grant 19B584,author Y.T,http://kxjsc.gov.hnedu.cn/in part by the Natural Science Foundation of Hunan Province(No.2020JJ4140),author Y.T,http://kjt.hunan.gov.cn/in part by the Natural Science Foundation of Hunan Province(No.2020JJ4141),author X.X,http://kjt.hunan.gov.cn/in part by the Key Research and Development Plan of Hunan Province under Grant 2019SK2022,author Y.T,http://kjt.hunan.gov.cn/in part by the Graduate Science and Technology Innovation Fund Project of Central South University of Forestry and Technology under Grant CX2020107,author Q.Z,https://jwc.csuft.edu.cn/。
文摘The existing safety helmet detection methods are mainly based on one-stage object detection algorithms with high detection speed to reach the real-time detection requirements,but they can’t accurately detect small objects and objects with obstructions.Therefore,we propose a helmet detection algorithm based on the attention mechanism(AT-YOLO).First of all,a channel attention module is added to the YOLOv3 backbone network,which can adaptively calibrate the channel features of the direction to improve the feature utilization,and a spatial attention module is added to the neck of the YOLOv3 network to capture the correlation between any positions in the feature map so that to increase the receptive field of the network.Secondly,we use DIoU(Distance Intersection over Union)bounding box regression loss function,it not only improving the measurement of bounding box regression loss but also increases the normalized distance loss between the prediction boxes and the target boxes,which makes the network more accurate in detecting small objects and faster in convergence.Finally,we explore the training strategy of the network model,which improves network performance without increasing the inference cost.Experiments show that the mAP of the proposed method reaches 96.5%,and the detection speed can reach 27 fps.Compared with other existing methods,it has better performance in detection accuracy and speed.
文摘Epilepsy is a type of brain disorder that causes recurrent seizures.It is the second most common neurological disease after Alzheimer’s.The effects of epilepsy in children are serious,since it causes a slower growth rate and a failure to develop certain skills.In the medical field,specialists record brain activity using an Electroencephalogram(EEG)to observe the epileptic seizures.The detection of these seizures is performed by specialists,but the results might not be accurate due to human errors;therefore,automated detection of epileptic pediatric seizures might be the optimal solution.This paper investigates the detection of epileptic seizures by applying supervised machine learning techniques.The techniques applied on the data of patients with ages seven years and below from children’s hospital boston massachusetts institute of technology(CHB-MIT)scalp EEG database of epileptic pediatric signals.A group of Naïve Bayes(NB),Support vector machine(SVM),Logistic regression(LR),k-nearest neighbor(KNN),Linear discernment(LD),Decision tree(DT),and ensemble learning methods were applied to the classification process.The results demonstrated the outperformance of the present study by achieving 100%for all parameters using the Ensemble learning model in contrast to state-of-the-art studies in the literature.Similarly,the SVM model achieved performance with 98.3%for sensitivity,97.7%for specificity,and 98%for accuracy.The results of the LD and LR models reveal the lower performance i.e.,the sensitivity at 66.9%–68.9%,specificity at 73.5%–77.1%,and accuracy at 70.2%–73%.
文摘One of the most complex tasks for computer-aided diagnosis(Intelligent decision support system)is the segmentation of lesions.Thus,this study proposes a new fully automated method for the segmentation of ovarian and breast ultrasound images.The main contributions of this research is the development of a novel Viola–James model capable of segmenting the ultrasound images of breast and ovarian cancer cases.In addition,proposed an approach that can efficiently generate region-of-interest(ROI)and new features that can be used in characterizing lesion boundaries.This study uses two databases in training and testing the proposed segmentation approach.The breast cancer database contains 250 images,while that of the ovarian tumor has 100 images obtained from several hospitals in Iraq.Results of the experiments showed that the proposed approach demonstrates better performance compared with those of other segmentation methods used for segmenting breast and ovarian ultrasound images.The segmentation result of the proposed system compared with the other existing techniques in the breast cancer data set was 78.8%.By contrast,the segmentation result of the proposed system in the ovarian tumor data set was 79.2%.In the classification results,we achieved 95.43%accuracy,92.20%sensitivity,and 97.5%specificity when we used the breast cancer data set.For the ovarian tumor data set,we achieved 94.84%accuracy,96.96%sensitivity,and 90.32%specificity.
基金supported by Data and Artificial Intelligence Scientific Chair at Umm AlQura University.
文摘In recent years,the infrastructure,instruments,and resources of network systems are becoming more complex and heterogeneous,with the rapid development of current internet and mobile communication technologies.In order to efficaciously prepare,control,hold and optimize networking systems,greater intelligence needs to be deployed.However,due to the inherently dispensed characteristic of conventional networks,Machine Learning(ML)techniques are hard to implement and deployed to govern and operate networks.Software-Defined Networking(SDN)brings us new possibilities to offer intelligence in the networks.SDN’s characteristics(e.g.,logically centralized control,global network view,software-based site visitor analysis,and dynamic updating of forwarding rules)make it simpler to apply machine learning strategies.Various perspectives of fiber-optic communications including fiber nonlinearity coverage,optical performance checking,cognitive shortcoming detection/anticipation,and arranging and improvement of softwaredefined networks are examined in Machine Learning(ML)applications.This research paper has presented an imaginative framework concept called Intelligent Software Defined Network(ISDN)for Cognitive Routing Optimization(CRO)using Deep Extreme Learning Machine(DELM)approach(ISDN-CRO-DELM)in light of the new challenges in the development and operation of communication systems,and capturing motivation from how living creatures deal with difficulty and usability.The proposed methodology develops around the planned applications of progressive DELM methods and,specifically,probabilistic generative models for framework wide learning,demonstrating,improvement,and information description.Furthermore,ISDN-CRO-DELM,suggest to integrate this learning framework with the ISDN for CRO and reconfiguration approaches at the system level.MATLAB 2019a is used for DELM simulation and superior results show the effectiveness of the proposed framework.
文摘Fake reviews,also known as deceptive opinions,are used to mislead people and have gained more importance recently.This is due to the rapid increase in online marketing transactions,such as selling and purchasing.E-commerce provides a facility for customers to post reviews and comment about the product or service when purchased.New customers usually go through the posted reviews or comments on the website before making a purchase decision.However,the current challenge is how new individuals can distinguish truthful reviews from fake ones,which later deceives customers,inflicts losses,and tarnishes the reputation of companies.The present paper attempts to develop an intelligent system that can detect fake reviews on ecommerce platforms using n-grams of the review text and sentiment scores given by the reviewer.The proposed methodology adopted in this study used a standard fake hotel review dataset for experimenting and data preprocessing methods and a term frequency-Inverse document frequency(TF-IDF)approach for extracting features and their representation.For detection and classification,n-grams of review texts were inputted into the constructed models to be classified as fake or truthful.However,the experiments were carried out using four different supervised machine-learning techniques and were trained and tested on a dataset collected from the Trip Advisor website.The classification results of these experiments showed that na飗e Bayes(NB),support vector machine(SVM),adaptive boosting(AB),and random forest(RF)received 88%,93%,94%,and 95%,respectively,based on testing accuracy and tje F1-score.The obtained results were compared with existing works that used the same dataset,and the proposed methods outperformed the comparable methods in terms of accuracy.