In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p...In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.展开更多
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become ...As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and industry.However,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial attacks.Adversarial examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong results.Therefore,the security of AI models for the digital communication signals identification is the premise of its efficient and credible applications.In this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial principle.Next we present more detailed adversarial indicators to evaluate attack and defense behavior.Finally,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.展开更多
In the Internet era,recommendation systems play a crucial role in helping users find relevant information from large datasets.Class imbalance is known to severely affect data quality,and therefore reduce the performan...In the Internet era,recommendation systems play a crucial role in helping users find relevant information from large datasets.Class imbalance is known to severely affect data quality,and therefore reduce the performance of recommendation systems.Due to the imbalance,machine learning algorithms tend to classify inputs into the positive(majority)class every time to achieve high prediction accuracy.Imbalance can be categorized such as by features and classes,but most studies consider only class imbalance.In this paper,we propose a recommendation system that can integrate multiple networks to adapt to a large number of imbalanced features and can deal with highly skewed and imbalanced datasets through a loss function.We propose a loss aware feature attention mechanism(LAFAM)to solve the issue of feature imbalance.The network incorporates an attention mechanism and uses multiple sub-networks to classify and learn features.For better results,the network can learn the weights of sub-networks and assign higher weights to important features.We propose suppression loss to address class imbalance,which favors negative loss by penalizing positive loss,and pays more attention to sample points near the decision boundary.Experiments on two large-scale datasets verify that the performance of the proposed system is greatly improved compared to baseline methods.展开更多
In order to meet the requirements of real-time and high efficient data transmission in data acquisition and industrial control fields,a scheme of network communication interface is presented. The design of hardware ci...In order to meet the requirements of real-time and high efficient data transmission in data acquisition and industrial control fields,a scheme of network communication interface is presented. The design of hardware circuit and the realization of software program are mainly introduced. The result of the experiment shows that this embedded system has high reliability and stability. It can realize high-speed data transmission,and also can satisfy the requirements of network communication in the industrial control fields.展开更多
Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be so...Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be solved. A comprehensive evaluation method is proposed, which combines grey relational analysis (GRA) and cloud model, to evaluate the anti-jamming performances of Link-16. Firstly, on the basis of establishing the anti-jamming performance evaluation indicator system of Link-16, the linear combination of analytic hierarchy process(AHP) and entropy weight method (EWM) are used to calculate the combined weight. Secondly, the qualitative and quantitative concept transformation model, i.e., the cloud model, is introduced to evaluate the anti-jamming abilities of Link-16 under each jamming scheme. In addition, GRA calculates the correlation degree between evaluation indicators and the anti-jamming performance of Link-16, and assesses the best anti-jamming technology. Finally, simulation results prove that the proposed evaluation model can achieve the objective of feasible and practical evaluation, which opens up a novel way for the research of anti-jamming performance evaluations of Link-16.展开更多
Gradient coil is an essential component of a magnetic resonance imaging(MRI)scanner.To achieve high spatial resolution and imaging speed,a high-efficiency gradient coil with high slew rate is required.In consideration...Gradient coil is an essential component of a magnetic resonance imaging(MRI)scanner.To achieve high spatial resolution and imaging speed,a high-efficiency gradient coil with high slew rate is required.In consideration of the safety and comfort of the patient,the mechanical stability,acoustic noise and peripheral nerve stimulation(PNS)are also need to be concerned for practical use.In our previous work,a high-efficiency whole-body gradient coil set with a hybrid cylindrical-planar structure has been presented,which offers significantly improved coil performances.In this work,we propose to design this transverse gradient coil system with transformed magnetic gradient fields.By shifting up the zero point of gradient fields,the designed new Y-gradient coil could provide enhanced electromagnetic performances.With more uniform coil winding arrangement,the net torque of the new coil is significantly reduced and the generated sound pressure level(SPL)is lower at most tested frequency bands.On the other hand,the new transverse gradient coil designed with rotated magnetic gradient fields produces considerably reduced electric field in the human body,which is important for the use of rapid MR sequences.It's demonstrated that a safer and patient-friendly design could be obtained by using transformed magnetic gradient fields,which is critical for practical use.展开更多
In this paper,according to the defect of methods which have low identification rate in low SNR,a new individual identification method of radiation source based on information entropy feature and SVM is presented. Firs...In this paper,according to the defect of methods which have low identification rate in low SNR,a new individual identification method of radiation source based on information entropy feature and SVM is presented. Firstly,based on the theory of multi-resolution wavelet analysis,the wavelet power spectrum of noncooperative signal can be gotten. Secondly,according to the information entropy theory,the wavelet power spectrum entropy is defined in this paper. Therefore,the database of signal's wavelet power spectrum entropy can be built in different SNR and signal parameters. Finally,the sorting and identification model based on SVM is built for the individual identification of radiation source signal. The simulation result indicates that this method has a high individual's identification rate in low SNR,when the SNR is greater than 4 dB,the identification rate can reach 100%. Under unstable SNR conditions,when the range of SNR is between 0 dB and 24 dB,the average identification rate is more than 92. 67%. Therefore,this method has a great application value in the complex electromagnetic environment.展开更多
A novel modulation recognition algorithm is proposed by introducing a Chen-Harker-Kanzow-Smale (CHKS) smooth function into the C-support vector machine deformation algorithm. A set of seven characteristic parameters i...A novel modulation recognition algorithm is proposed by introducing a Chen-Harker-Kanzow-Smale (CHKS) smooth function into the C-support vector machine deformation algorithm. A set of seven characteristic parameters is selected from a range of parameters of communication signals including instantaneous amplitude, phase, and frequency. And the Newton-Armijo algorithm is utilized to train the proposed algorithm, namely, smooth CHKS smooth support vector machine (SCHKS-SSVM). Compared with the existing algorithms, the proposed algorithm not only solves the non-differentiable problem of the second order objective function, but also reduces the recognition error. It significantly improves the training speed and also saves a large amount of storage space through large-scale sorting problems. The simulation results show that the recognition rate of the algorithm can batch training. Therefore, the proposed algorithm is suitable for solving the problem of high dimension and its recognition can exceed 95% when the signal-to-noise ratio is no less than 10 dB.展开更多
The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction findin...The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.展开更多
A five-value memristor model is proposed,it is proved that the model has a typical hysteresis loop by analyzing the relationship between voltage and current.Then,based on the classical Liu-Chen system,a new memristor-...A five-value memristor model is proposed,it is proved that the model has a typical hysteresis loop by analyzing the relationship between voltage and current.Then,based on the classical Liu-Chen system,a new memristor-based fourdimensional(4D)chaotic system is designed by using the five-value memristor.The trajectory phase diagram,Poincare mapping,bifurcation diagram,and Lyapunov exponent spectrum are drawn by numerical simulation.It is found that,in addition to the general chaos characteristics,the system has some special phenomena,such as hidden homogenous multistabilities,hidden heterogeneous multistabilities,and hidden super-multistabilities.Finally,according to the dimensionless equation of the system,the circuit model of the system is built and simulated.The results are consistent with the numerical simulation results,which proves the physical realizability of the five-value memristor-based chaotic system proposed in this paper.展开更多
Fingerprint identification and recognition are considered popular technique in many security and law enforcement applications. The aim of this paper is to present a proposed authentication system based on fingerprint ...Fingerprint identification and recognition are considered popular technique in many security and law enforcement applications. The aim of this paper is to present a proposed authentication system based on fingerprint as biometric type, which is capable of recognizing persons with high level of confidence and minimum error rate. The designed system is implemented using Matlab 2015b and tested on a set of fingerprint images gathered from 90 different persons with 8 samples for each using Futronic’s FS80 USB2.0 Fingerprint Scanner and the ftrScanApiEx.exe program. An efficient image enhancement algorithm is used to improve the clarity (contrast) of the ridge structures in a fingerprint. After that core point and candidate core points are extracted for each Fingerprint image and feature vector have been extracted for each point using filterbank_based algorithm. Also, for the matching the KNN neural network was used. In addition, the matching results were calculated and compared to other papers using some performance evaluation factors. A threshold has been proposed and used to provide the rejection for the fingerprint images that does not belong to the database and the experimental results show that the KNN technique have a recognition rate equal to 93.9683% in a threshold equal to 70%.展开更多
This paper proposes a linear frequency modulation (LFM signal) and biphase coding (BC signal) mixed modulation signal called LFM-BC signal. LFM-BC signal has both LFM signal and BC signal two kinds of traditional sign...This paper proposes a linear frequency modulation (LFM signal) and biphase coding (BC signal) mixed modulation signal called LFM-BC signal. LFM-BC signal has both LFM signal and BC signal two kinds of traditional signal advantages but makes up for their shortcomings. In this paper, LFM-BC signal, LFM and BC signals are studied and compared from the time characteristic and frequency characteristic of the signal, fuzzy function, pulse compression and Doppler characteristics and low probability of interception (LPI) characteristics.展开更多
Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh ma...Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh marine environment. And Luby transform(LT) codes are the first codes fully realizing the digital fountain concept. However, in conventional LT encoding/decoding algorithms, due to the imperfect coverage(IC) of input symbols and short cycles in the generator matrix, stopping sets would occur and terminate the decoding. Thus, the recovery probability is reduced,high coding overhead is required and decoding delay is increased.These issues would be disadvantages while applying LT codes in underwater acoustic communication. Aimed at solving those issues, novel encoding/decoding algorithms are proposed. First,a doping and non-uniform selecting(DNS) encoding algorithm is proposed to solve the IC and the generation of short cycles problems. And this can reduce the probability of stopping sets occur during decoding. Second, a hybrid on the fly Gaussian elimination and belief propagation(OFG-BP) decoding algorithm is designed to reduce the decoding delay and efficiently utilize the information of stopping sets. Comparisons via Monte Carlo simulation confirm that the proposed schemes could achieve better overall decoding performances in comparison with conventional schemes.展开更多
Sine Non-linear Chirp Keying(SNCK) is a kind of high-efficient modulation scheme, which provides a potential new beamforming method in communication and radar systems. It has been proved to have advantages in some par...Sine Non-linear Chirp Keying(SNCK) is a kind of high-efficient modulation scheme, which provides a potential new beamforming method in communication and radar systems. It has been proved to have advantages in some parameter estimation issues over conventional modulation schemes. In this paper, a novel transform termed as Discrete Sinusoidal Frequency Modulation transform(DSFMT) is proposed. Then, the DSFMT of SNCK signal is deduced and classified into three types, based on which, the time-bandwidth product is estimated by the proposed algorithm. Simulation results show that the noise has a signifi cant impact on the localization of the peak value and the time-bandwidth product can be estimated by using local ratio values when.展开更多
In order to improve the reliability of hydrogen sensor,a novel strategy for full range of hydrogen sensor fault detection and recovery is proposed in this paper. Three kinds of sensors are integrated to realize the me...In order to improve the reliability of hydrogen sensor,a novel strategy for full range of hydrogen sensor fault detection and recovery is proposed in this paper. Three kinds of sensors are integrated to realize the measurement for full range of hydrogen concentration based on relevance vector machine( RVM). Failure detection of hydrogen sensor is carried out by using the variance detection method. When a sensor fault is detected,the other fault-free sensors can recover the fault data in real-time by using RVM predictor accounting for the relevance of sensor data. Analysis,together with both simulated and experimental results,a full-range hydrogen detection and hydrogen sensor self-validating experiment is presented to demonstrate that the proposed strategy is superior at accuracy and runtime compared with the conventional methods. Results show that the proposed methodology provides a better solution to the full range of hydrogen detection and the reliability improvement of hydrogen sensor.展开更多
In order to solve the problem that the original decoding algorithm of multi-band LDPC codes is high and is not conducive to hardware implementation, two simplified decoding algorithms for multi-band LDPC codes are stu...In order to solve the problem that the original decoding algorithm of multi-band LDPC codes is high and is not conducive to hardware implementation, two simplified decoding algorithms for multi-band LDPC codes are studied: the reliability propagation based on fast Fourier transform Code algorithm (FFT-BP) and log-BP decoding algorithm based on logarithmic operations. The simulation results show that the FFT-BP decoding algorithm is more convenient and efficient.展开更多
Sensor networks are vulnerable to many attacks because the sensor networks operate in open environments. It is easy to incur one or more attacks such as a selective forwarding attack, a false report injection attack. ...Sensor networks are vulnerable to many attacks because the sensor networks operate in open environments. It is easy to incur one or more attacks such as a selective forwarding attack, a false report injection attack. It is hard to defend the sensor network from the multiple attacks through existing security methods. Thus, we suggest an energy-efficient security method in order to detect the multiple attacks. This paper presents a security method to detect the false report injection attack and the selective forwarding attack in the sensor network using a new message type. The message type is a filtering message. The filtering message prevents from generating and forwarding false alert messages. We evaluated performance of our proposed method through a simulation in comparison with an application of SEF (statistical enroute filtering scheme) and CHEMAS (Check point-based Multi-hop Acknowledgement Scheme). The simulation results represent that the proposed method is 10% more energy-efficient than the application when the number of false reports is great while retaining the detection performance.展开更多
For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in ...For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.展开更多
In order to solve the problem that the performance of traditional localization methods for mixed near-field sources(NFSs)and far-field sources(FFSs)degrades under impulsive noise,a robust and novel localization method...In order to solve the problem that the performance of traditional localization methods for mixed near-field sources(NFSs)and far-field sources(FFSs)degrades under impulsive noise,a robust and novel localization method is proposed.After eliminating the impacts of impulsive noise by the weighted out-lier filter,the direction of arrivals(DOAs)of FFSs can be estimated by multiple signal classification(MUSIC)spectral peaks search.Based on the DOAs information of FFSs,the separation of mixed sources can be performed.Finally,the estimation of localizing parameters of NFSs can avoid two-dimension spectral peaks search by decomposing steering vectors.The Cramer-Rao bounds(CRB)for the unbiased estimations of DOA and range under impulsive noise have been drawn.Simulation experiments verify that the proposed method has advantages in probability of successful estimation(PSE)and root mean square error(RMSE)compared with existing localization methods.It can be concluded that the proposed method is effective and reliable in the environment with low generalized signal to noise ratio(GSNR),few snapshots,and strong impulse.展开更多
Conservative chaotic systems have unique advantages over dissipative chaotic systems in the fields of secure communication and pseudo-random number generator because they do not have attractors but possess good traver...Conservative chaotic systems have unique advantages over dissipative chaotic systems in the fields of secure communication and pseudo-random number generator because they do not have attractors but possess good traversal and pseudorandomness. In this work, a novel five-dimensional(5D) Hamiltonian conservative hyperchaotic system is proposed based on the 5D Euler equation. The proposed system can have different types of coordinate transformations and time reversal symmetries. In this work, Hamilton energy and Casimir energy are analyzed firstly, and it is proved that the new system satisfies Hamilton energy conservation and can generate chaos. Then, the complex dynamic characteristics of the system are demonstrated and the conservatism and chaos characteristics of the system are verified through the correlation analysis methods such as phase diagram, equilibrium point, Lyapunov exponent, bifurcation diagram, and SE complexity. In addition, a detailed analysis of the multistable characteristics of the system reveals that many energy-related coexisting orbits exist. Based on the infinite number of center-type and saddle-type equilibrium points, the dynamic characteristics of the hidden multistability of the system are revealed. Then, the National Institute of Standards and Technology(NIST)test of the new system shows that the chaotic sequence generated by the system has strong pseudo-random. Finally, the circuit simulation and hardware circuit experiment of the system are carried out with Multisim simulation software and digital signal processor(DSP) respectively. The experimental results confirm that the new system has good ergodicity and realizability.展开更多
基金supported by Shandong Provincial Natural Science Foundation(ZR2020MF015)Aerospace Technology Group Stability Support Project(ZY0110020009).
文摘In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.
基金supported by the National Natural Science Foundation of China(61771154)the Fundamental Research Funds for the Central Universities(3072022CF0601)supported by Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin,China.
文摘As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and industry.However,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial attacks.Adversarial examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong results.Therefore,the security of AI models for the digital communication signals identification is the premise of its efficient and credible applications.In this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial principle.Next we present more detailed adversarial indicators to evaluate attack and defense behavior.Finally,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.
基金supported by the National Key Research and Development Program of China(Grant numbers:2021YFF0901705,2021YFF0901700)the State Key Laboratory of Media Convergence and Communication,Communication University of China+1 种基金the Fundamental Research Funds for the Central Universitiesthe High-Quality and Cutting-Edge Disciplines Construction Project for Universities in Beijing(Internet Information,Communication University of China).
文摘In the Internet era,recommendation systems play a crucial role in helping users find relevant information from large datasets.Class imbalance is known to severely affect data quality,and therefore reduce the performance of recommendation systems.Due to the imbalance,machine learning algorithms tend to classify inputs into the positive(majority)class every time to achieve high prediction accuracy.Imbalance can be categorized such as by features and classes,but most studies consider only class imbalance.In this paper,we propose a recommendation system that can integrate multiple networks to adapt to a large number of imbalanced features and can deal with highly skewed and imbalanced datasets through a loss function.We propose a loss aware feature attention mechanism(LAFAM)to solve the issue of feature imbalance.The network incorporates an attention mechanism and uses multiple sub-networks to classify and learn features.For better results,the network can learn the weights of sub-networks and assign higher weights to important features.We propose suppression loss to address class imbalance,which favors negative loss by penalizing positive loss,and pays more attention to sample points near the decision boundary.Experiments on two large-scale datasets verify that the performance of the proposed system is greatly improved compared to baseline methods.
基金Applied Basic and Advanced Technology Research Project of Tianjin(08JCYBJC14700)
文摘In order to meet the requirements of real-time and high efficient data transmission in data acquisition and industrial control fields,a scheme of network communication interface is presented. The design of hardware circuit and the realization of software program are mainly introduced. The result of the experiment shows that this embedded system has high reliability and stability. It can realize high-speed data transmission,and also can satisfy the requirements of network communication in the industrial control fields.
基金Heilongjiang Provincial Natural Science Foundation of China (LH2021F009)。
文摘Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be solved. A comprehensive evaluation method is proposed, which combines grey relational analysis (GRA) and cloud model, to evaluate the anti-jamming performances of Link-16. Firstly, on the basis of establishing the anti-jamming performance evaluation indicator system of Link-16, the linear combination of analytic hierarchy process(AHP) and entropy weight method (EWM) are used to calculate the combined weight. Secondly, the qualitative and quantitative concept transformation model, i.e., the cloud model, is introduced to evaluate the anti-jamming abilities of Link-16 under each jamming scheme. In addition, GRA calculates the correlation degree between evaluation indicators and the anti-jamming performance of Link-16, and assesses the best anti-jamming technology. Finally, simulation results prove that the proposed evaluation model can achieve the objective of feasible and practical evaluation, which opens up a novel way for the research of anti-jamming performance evaluations of Link-16.
基金supported by the Instrument Developing Project of Magnetic Resonance Union of Chinese Academy of Sciences,Grant No.2022GZL002.
文摘Gradient coil is an essential component of a magnetic resonance imaging(MRI)scanner.To achieve high spatial resolution and imaging speed,a high-efficiency gradient coil with high slew rate is required.In consideration of the safety and comfort of the patient,the mechanical stability,acoustic noise and peripheral nerve stimulation(PNS)are also need to be concerned for practical use.In our previous work,a high-efficiency whole-body gradient coil set with a hybrid cylindrical-planar structure has been presented,which offers significantly improved coil performances.In this work,we propose to design this transverse gradient coil system with transformed magnetic gradient fields.By shifting up the zero point of gradient fields,the designed new Y-gradient coil could provide enhanced electromagnetic performances.With more uniform coil winding arrangement,the net torque of the new coil is significantly reduced and the generated sound pressure level(SPL)is lower at most tested frequency bands.On the other hand,the new transverse gradient coil designed with rotated magnetic gradient fields produces considerably reduced electric field in the human body,which is important for the use of rapid MR sequences.It's demonstrated that a safer and patient-friendly design could be obtained by using transformed magnetic gradient fields,which is critical for practical use.
基金Sponsored by the Nation Nature Science Foundation of China(Grant No.61201237,61301095)the Nature Science Foundation of Heilongjiang Province of China(Grant No.QC2012C069)the Fundamental Research Funds for the Central Universities(Grant No.HEUCFZ1129,HEUCF130817,HEUCF130810)
文摘In this paper,according to the defect of methods which have low identification rate in low SNR,a new individual identification method of radiation source based on information entropy feature and SVM is presented. Firstly,based on the theory of multi-resolution wavelet analysis,the wavelet power spectrum of noncooperative signal can be gotten. Secondly,according to the information entropy theory,the wavelet power spectrum entropy is defined in this paper. Therefore,the database of signal's wavelet power spectrum entropy can be built in different SNR and signal parameters. Finally,the sorting and identification model based on SVM is built for the individual identification of radiation source signal. The simulation result indicates that this method has a high individual's identification rate in low SNR,when the SNR is greater than 4 dB,the identification rate can reach 100%. Under unstable SNR conditions,when the range of SNR is between 0 dB and 24 dB,the average identification rate is more than 92. 67%. Therefore,this method has a great application value in the complex electromagnetic environment.
基金supported by the National Natural Science Foundation of China(61401196)the Jiangsu Provincial Natural Science Foundation of China(BK20140954)+1 种基金the Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory(KX152600015/ITD-U15006)the Beijing Shengfeifan Electronic System Technology Development Co.,Ltd(KY10800150036)
文摘A novel modulation recognition algorithm is proposed by introducing a Chen-Harker-Kanzow-Smale (CHKS) smooth function into the C-support vector machine deformation algorithm. A set of seven characteristic parameters is selected from a range of parameters of communication signals including instantaneous amplitude, phase, and frequency. And the Newton-Armijo algorithm is utilized to train the proposed algorithm, namely, smooth CHKS smooth support vector machine (SCHKS-SSVM). Compared with the existing algorithms, the proposed algorithm not only solves the non-differentiable problem of the second order objective function, but also reduces the recognition error. It significantly improves the training speed and also saves a large amount of storage space through large-scale sorting problems. The simulation results show that the recognition rate of the algorithm can batch training. Therefore, the proposed algorithm is suitable for solving the problem of high dimension and its recognition can exceed 95% when the signal-to-noise ratio is no less than 10 dB.
基金supported by the National Natural Science Foundation of China (61102106)the Fundamental Research Funds for the Central Universities (HEUCF1208 HEUCF100801)
文摘The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant No.61203004)the Natural Science Foundation of Heilongjiang Province,China(Grant No.F201220)the Heilongjiang Provincial Natural Science Foundation of Joint Guidance Project(Grant No.LH2020F022).
文摘A five-value memristor model is proposed,it is proved that the model has a typical hysteresis loop by analyzing the relationship between voltage and current.Then,based on the classical Liu-Chen system,a new memristor-based fourdimensional(4D)chaotic system is designed by using the five-value memristor.The trajectory phase diagram,Poincare mapping,bifurcation diagram,and Lyapunov exponent spectrum are drawn by numerical simulation.It is found that,in addition to the general chaos characteristics,the system has some special phenomena,such as hidden homogenous multistabilities,hidden heterogeneous multistabilities,and hidden super-multistabilities.Finally,according to the dimensionless equation of the system,the circuit model of the system is built and simulated.The results are consistent with the numerical simulation results,which proves the physical realizability of the five-value memristor-based chaotic system proposed in this paper.
文摘Fingerprint identification and recognition are considered popular technique in many security and law enforcement applications. The aim of this paper is to present a proposed authentication system based on fingerprint as biometric type, which is capable of recognizing persons with high level of confidence and minimum error rate. The designed system is implemented using Matlab 2015b and tested on a set of fingerprint images gathered from 90 different persons with 8 samples for each using Futronic’s FS80 USB2.0 Fingerprint Scanner and the ftrScanApiEx.exe program. An efficient image enhancement algorithm is used to improve the clarity (contrast) of the ridge structures in a fingerprint. After that core point and candidate core points are extracted for each Fingerprint image and feature vector have been extracted for each point using filterbank_based algorithm. Also, for the matching the KNN neural network was used. In addition, the matching results were calculated and compared to other papers using some performance evaluation factors. A threshold has been proposed and used to provide the rejection for the fingerprint images that does not belong to the database and the experimental results show that the KNN technique have a recognition rate equal to 93.9683% in a threshold equal to 70%.
文摘This paper proposes a linear frequency modulation (LFM signal) and biphase coding (BC signal) mixed modulation signal called LFM-BC signal. LFM-BC signal has both LFM signal and BC signal two kinds of traditional signal advantages but makes up for their shortcomings. In this paper, LFM-BC signal, LFM and BC signals are studied and compared from the time characteristic and frequency characteristic of the signal, fuzzy function, pulse compression and Doppler characteristics and low probability of interception (LPI) characteristics.
基金supported by the National Natural Science Foundation of China(61371099)the Fundamental Research Funds for the Central Universities of China(HEUCF150812/150810)
文摘Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh marine environment. And Luby transform(LT) codes are the first codes fully realizing the digital fountain concept. However, in conventional LT encoding/decoding algorithms, due to the imperfect coverage(IC) of input symbols and short cycles in the generator matrix, stopping sets would occur and terminate the decoding. Thus, the recovery probability is reduced,high coding overhead is required and decoding delay is increased.These issues would be disadvantages while applying LT codes in underwater acoustic communication. Aimed at solving those issues, novel encoding/decoding algorithms are proposed. First,a doping and non-uniform selecting(DNS) encoding algorithm is proposed to solve the IC and the generation of short cycles problems. And this can reduce the probability of stopping sets occur during decoding. Second, a hybrid on the fly Gaussian elimination and belief propagation(OFG-BP) decoding algorithm is designed to reduce the decoding delay and efficiently utilize the information of stopping sets. Comparisons via Monte Carlo simulation confirm that the proposed schemes could achieve better overall decoding performances in comparison with conventional schemes.
基金supported by Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory(KX152600015/ITD-U15006)National Natural Science Foundation of China(No.61401196)
文摘Sine Non-linear Chirp Keying(SNCK) is a kind of high-efficient modulation scheme, which provides a potential new beamforming method in communication and radar systems. It has been proved to have advantages in some parameter estimation issues over conventional modulation schemes. In this paper, a novel transform termed as Discrete Sinusoidal Frequency Modulation transform(DSFMT) is proposed. Then, the DSFMT of SNCK signal is deduced and classified into three types, based on which, the time-bandwidth product is estimated by the proposed algorithm. Simulation results show that the noise has a signifi cant impact on the localization of the peak value and the time-bandwidth product can be estimated by using local ratio values when.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201306 and No.61473095)
文摘In order to improve the reliability of hydrogen sensor,a novel strategy for full range of hydrogen sensor fault detection and recovery is proposed in this paper. Three kinds of sensors are integrated to realize the measurement for full range of hydrogen concentration based on relevance vector machine( RVM). Failure detection of hydrogen sensor is carried out by using the variance detection method. When a sensor fault is detected,the other fault-free sensors can recover the fault data in real-time by using RVM predictor accounting for the relevance of sensor data. Analysis,together with both simulated and experimental results,a full-range hydrogen detection and hydrogen sensor self-validating experiment is presented to demonstrate that the proposed strategy is superior at accuracy and runtime compared with the conventional methods. Results show that the proposed methodology provides a better solution to the full range of hydrogen detection and the reliability improvement of hydrogen sensor.
文摘In order to solve the problem that the original decoding algorithm of multi-band LDPC codes is high and is not conducive to hardware implementation, two simplified decoding algorithms for multi-band LDPC codes are studied: the reliability propagation based on fast Fourier transform Code algorithm (FFT-BP) and log-BP decoding algorithm based on logarithmic operations. The simulation results show that the FFT-BP decoding algorithm is more convenient and efficient.
文摘Sensor networks are vulnerable to many attacks because the sensor networks operate in open environments. It is easy to incur one or more attacks such as a selective forwarding attack, a false report injection attack. It is hard to defend the sensor network from the multiple attacks through existing security methods. Thus, we suggest an energy-efficient security method in order to detect the multiple attacks. This paper presents a security method to detect the false report injection attack and the selective forwarding attack in the sensor network using a new message type. The message type is a filtering message. The filtering message prevents from generating and forwarding false alert messages. We evaluated performance of our proposed method through a simulation in comparison with an application of SEF (statistical enroute filtering scheme) and CHEMAS (Check point-based Multi-hop Acknowledgement Scheme). The simulation results represent that the proposed method is 10% more energy-efficient than the application when the number of false reports is great while retaining the detection performance.
基金This work was supported by the National Natural Science Foundation of China(62073093)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q19098)+1 种基金the Heilongjiang Provincial Natural Science Foundation of China(LH2020F017)the Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology.
文摘For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.
基金supported by the National Natural Science Foundation of China(62073093)the initiation fund for postdoctoral research in Heilongjiang Province(LBH-Q19098)the Natural Science Foundation of Heilongjiang Province(LH2020F017).
文摘In order to solve the problem that the performance of traditional localization methods for mixed near-field sources(NFSs)and far-field sources(FFSs)degrades under impulsive noise,a robust and novel localization method is proposed.After eliminating the impacts of impulsive noise by the weighted out-lier filter,the direction of arrivals(DOAs)of FFSs can be estimated by multiple signal classification(MUSIC)spectral peaks search.Based on the DOAs information of FFSs,the separation of mixed sources can be performed.Finally,the estimation of localizing parameters of NFSs can avoid two-dimension spectral peaks search by decomposing steering vectors.The Cramer-Rao bounds(CRB)for the unbiased estimations of DOA and range under impulsive noise have been drawn.Simulation experiments verify that the proposed method has advantages in probability of successful estimation(PSE)and root mean square error(RMSE)compared with existing localization methods.It can be concluded that the proposed method is effective and reliable in the environment with low generalized signal to noise ratio(GSNR),few snapshots,and strong impulse.
基金Project supported by the Heilongjiang Province Natural Science Foundation Joint Guidance Project,China (Grant No.LH2020F022)the Fundamental Research Funds for the Central Universities,China (Grant No.3072022CF0801)。
文摘Conservative chaotic systems have unique advantages over dissipative chaotic systems in the fields of secure communication and pseudo-random number generator because they do not have attractors but possess good traversal and pseudorandomness. In this work, a novel five-dimensional(5D) Hamiltonian conservative hyperchaotic system is proposed based on the 5D Euler equation. The proposed system can have different types of coordinate transformations and time reversal symmetries. In this work, Hamilton energy and Casimir energy are analyzed firstly, and it is proved that the new system satisfies Hamilton energy conservation and can generate chaos. Then, the complex dynamic characteristics of the system are demonstrated and the conservatism and chaos characteristics of the system are verified through the correlation analysis methods such as phase diagram, equilibrium point, Lyapunov exponent, bifurcation diagram, and SE complexity. In addition, a detailed analysis of the multistable characteristics of the system reveals that many energy-related coexisting orbits exist. Based on the infinite number of center-type and saddle-type equilibrium points, the dynamic characteristics of the hidden multistability of the system are revealed. Then, the National Institute of Standards and Technology(NIST)test of the new system shows that the chaotic sequence generated by the system has strong pseudo-random. Finally, the circuit simulation and hardware circuit experiment of the system are carried out with Multisim simulation software and digital signal processor(DSP) respectively. The experimental results confirm that the new system has good ergodicity and realizability.