Improving the quality assurance (QA) processes and acquiring accreditation are top priorities for academic programs. The learning outcomes (LOs)assessment and continuous quality improvement represent core components o...Improving the quality assurance (QA) processes and acquiring accreditation are top priorities for academic programs. The learning outcomes (LOs)assessment and continuous quality improvement represent core components ofthe quality assurance system (QAS). Current assessment methods suffer deficiencies related to accuracy and reliability, and they lack well-organized processes forcontinuous improvement planning. Moreover, the absence of automation, andintegration in QA processes forms a major obstacle towards developing efficientquality system. There is a pressing need to adopt security protocols that providerequired security services to safeguard the valuable information processed byQAS as well. This research proposes an effective methodology for LOs assessment and continuous improvement processes. The proposed approach ensuresmore accurate and reliable LOs assessment results and provides systematic wayfor utilizing those results in the continuous quality improvement. This systematicand well-specified QA processes were then utilized to model and implement automated and secure QAS that efficiently performs quality-related processes. Theproposed system adopts two security protocols that provide confidentiality, integrity, and authentication for quality data and reports. The security protocols avoidthe source repudiation, which is important in the quality reporting system. This isachieved through implementing powerful cryptographic algorithms. The QASenables efficient data collection and processing required for analysis and interpretation. It also prepares for the development of datasets that can be used in futureartificial intelligence (AI) researches to support decision making and improve thequality of academic programs. The proposed approach is implemented in a successful real case study for a computer science program. The current study servesscientific programs struggling to achieve academic accreditation, and gives rise tofully automating and integrating the QA processes and adopting modern AI andsecurity technologies to develop effective QAS.展开更多
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable...Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.展开更多
Bitcoin has gained widespread acceptance within the cryptocurrency community, and the Lightning network, an innovative and scalable extension of Bitcoin, is demonstrating remarkable advancements in electronic payments...Bitcoin has gained widespread acceptance within the cryptocurrency community, and the Lightning network, an innovative and scalable extension of Bitcoin, is demonstrating remarkable advancements in electronic payments. The Lightning network addresses the historical criticisms of Bitcoin by facilitating rapid transfers at reduced costs, addressing scalability concerns. However, despite its potential, integrating the Lightning network into diverse systems has proven challenging due to inherent system heterogeneity. This study seeks to overcome these challenges by contributing to the effective implementation of a micropayment system, specifically targeting microtransactions involving individuals outside developing countries, with a focus on the diaspora regularly transferring money to their loved ones. Our objective is to establish a decentralized microtransaction system in Burkina Faso, within the broader context of pursuing monetary independence. We have developed and implemented a prototype microtransaction system, leveraging a transfer application that combines the Lightning network blockchain and mobile money. This unique solution not only integrates local African currencies but also enables direct payments for services and goods at local establishments, fostering economic inclusivity and financial autonomy.展开更多
The NIST Cybersecurity Framework (NIST CSF) serves as a voluntary guideline aimed at helping organizations, tiny and medium-sized enterprises (SMEs), and critical infrastructure operators, effectively manage cyber ris...The NIST Cybersecurity Framework (NIST CSF) serves as a voluntary guideline aimed at helping organizations, tiny and medium-sized enterprises (SMEs), and critical infrastructure operators, effectively manage cyber risks. Although comprehensive, the complexity of the NIST CSF can be overwhelming, especially for those lacking extensive cybersecurity resources. Current implementation tools often cater to larger companies, neglecting the specific needs of SMEs, which can be vulnerable to cyber threats. To address this gap, our research proposes a user-friendly, open-source web platform designed to simplify the implementation of the NIST CSF. This platform enables organizations to assess their risk exposure and continuously monitor their cybersecurity maturity through tailored recommendations based on their unique profiles. Our methodology includes a literature review of existing tools and standards, followed by a description of the platform’s design and architecture. Initial tests with SMEs in Burkina Faso reveal a concerning cybersecurity maturity level, indicating the urgent need for improved strategies based on our findings. By offering an intuitive interface and cross-platform accessibility, this solution aims to empower organizations to enhance their cybersecurity resilience in an evolving threat landscape. The article concludes with discussions on the practical implications and future enhancements of the tool.展开更多
Currently,some photorealistic computer graphics are very similar to photographic images.Photorealistic computer generated graphics can be forged as photographic images,causing serious security problems.The aim of this...Currently,some photorealistic computer graphics are very similar to photographic images.Photorealistic computer generated graphics can be forged as photographic images,causing serious security problems.The aim of this work is to use a deep neural network to detect photographic images(PI)versus computer generated graphics(CG).In existing approaches,image feature classification is computationally intensive and fails to achieve realtime analysis.This paper presents an effective approach to automatically identify PI and CG based on deep convolutional neural networks(DCNNs).Compared with some existing methods,the proposed method achieves real-time forensic tasks by deepening the network structure.Experimental results show that this approach can effectively identify PI and CG with average detection accuracy of 98%.展开更多
Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tr...Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tracks the situation of the software and hardware operating on the network.Notwithstanding advancements of growth,current intrusion detection systems also experience difficulties in enhancing detection precision,growing false alarm levels and identifying suspicious activities.In order to address above mentioned issues,several researchers concentrated on designing intrusion detection systems that rely on machine learning approaches.Machine learning models will accurately identify the underlying variations among regular information and irregular information with incredible efficiency.Artificial intelligence,particularly machine learning methods can be used to develop an intelligent intrusion detection framework.There in this article in order to achieve this objective,we propose an intrusion detection system focused on a Deep extreme learning machine(DELM)which first establishes the assessment of safety features that lead to their prominence and then constructs an adaptive intrusion detection system focusing on the important features.In the moment,we researched the viability of our suggested DELMbased intrusion detection system by conducting dataset assessments and evaluating the performance factors to validate the system reliability.The experimental results illustrate that the suggested framework outclasses traditional algorithms.In fact,the suggested framework is not only of interest to scientific research but also of functional importance.展开更多
A deep fusion model is proposed for facial expression-based human-computer Interaction system.Initially,image preprocessing,i.e.,the extraction of the facial region from the input image is utilized.Thereafter,the extr...A deep fusion model is proposed for facial expression-based human-computer Interaction system.Initially,image preprocessing,i.e.,the extraction of the facial region from the input image is utilized.Thereafter,the extraction of more discriminative and distinctive deep learning features is achieved using extracted facial regions.To prevent overfitting,in-depth features of facial images are extracted and assigned to the proposed convolutional neural network(CNN)models.Various CNN models are then trained.Finally,the performance of each CNN model is fused to obtain the final decision for the seven basic classes of facial expressions,i.e.,fear,disgust,anger,surprise,sadness,happiness,neutral.For experimental purposes,three benchmark datasets,i.e.,SFEW,CK+,and KDEF are utilized.The performance of the proposed systemis compared with some state-of-the-artmethods concerning each dataset.Extensive performance analysis reveals that the proposed system outperforms the competitive methods in terms of various performance metrics.Finally,the proposed deep fusion model is being utilized to control a music player using the recognized emotions of the users.展开更多
There is a great need to provide educational environments for blind and handicapped people. There are many Islamic websites and applications dedicated to the educational services for the Holy Quran and Its Sciences (Q...There is a great need to provide educational environments for blind and handicapped people. There are many Islamic websites and applications dedicated to the educational services for the Holy Quran and Its Sciences (Quran Recitations, the interpretations, etc.) on the Internet. Unfortunately, blind and handicapped people could not use these services. These people cannot use the keyboard and the mouse. In addition, the ability to read and write is essential to benefit from these services. In this paper, we present an educational environment that allows these people to take full advantage of the scientific materials. This is done through the interaction with the system using voice commands by speaking directly without the need to write or to use the mouse. Google Speech API is used for the universal speech recognition after a preprocessing and post processing phases to improve the accuracy. For blind people, responses of these commands will be played back through the audio device instead of displaying the text to the screen. The text will be displayed on the screen to help other people make use of the system.展开更多
Assistive devices for disabled people with the help of Brain-Computer Interaction(BCI)technology are becoming vital bio-medical engineering.People with physical disabilities need some assistive devices to perform thei...Assistive devices for disabled people with the help of Brain-Computer Interaction(BCI)technology are becoming vital bio-medical engineering.People with physical disabilities need some assistive devices to perform their daily tasks.In these devices,higher latency factors need to be addressed appropriately.Therefore,the main goal of this research is to implement a real-time BCI architecture with minimum latency for command actuation.The proposed architecture is capable to communicate between different modules of the system by adopting an automotive,intelligent data processing and classification approach.Neuro-sky mind wave device has been used to transfer the data to our implemented server for command propulsion.Think-Net Convolutional Neural Network(TN-CNN)architecture has been proposed to recognize the brain signals and classify them into six primary mental states for data classification.Data collection and processing are the responsibility of the central integrated server for system load minimization.Testing of implemented architecture and deep learning model shows excellent results.The proposed system integrity level was the minimum data loss and the accurate commands processing mechanism.The training and testing results are 99%and 93%for custom model implementation based on TN-CNN.The proposed real-time architecture is capable of intelligent data processing unit with fewer errors,and it will benefit assistive devices working on the local server and cloud server.展开更多
Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.T...Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.To understand the dynamics of the virus propagation in a better way,a computer virus spread model with fuzzy parameters is presented in this work.It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity,which depends on the quantity of virus.Considering this,the parametersβandγbeing functions of the computer virus load,are considered fuzzy numbers.Using fuzzy theory helps us understand the spread of computer viruses more realistically as these parameters have fixed values in classical models.The essential features of the model,like reproduction number and equilibrium analysis,are discussed in fuzzy senses.Moreover,with fuzziness,two numerical methods,the forward Euler technique,and a nonstandard finite difference(NSFD)scheme,respectively,are developed and analyzed.In the evidence of the numerical simulations,the proposed NSFD method preserves the main features of the dynamic system.It can be considered a reliable tool to predict such types of solutions.展开更多
Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revol...Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revolutionized the Fourth Industrial Revolution by enabling interconnected devices to offer innovative services,ultimately enhancing human lives.This paper presents a new approach utilizing lightweight blockchain technology,effectively reducing the computational burden typically associated with conventional blockchain systems.By integrating this lightweight blockchain with IoT systems,substantial reductions in implementation time and computational complexity can be achieved.Moreover,the paper proposes the utilization of the Okamoto Uchiyama encryption algorithm,renowned for its homomorphic characteristics,to reinforce the privacy and security of IoT-generated data.The integration of homomorphic encryption and blockchain technology establishes a secure and decentralized platformfor storing and analyzing sensitive data of the supply chain data.This platformfacilitates the development of some business models and empowers decentralized applications to perform computations on encrypted data while maintaining data privacy.The results validate the robust security of the proposed system,comparable to standard blockchain implementations,leveraging the distinctive homomorphic attributes of the Okamoto Uchiyama algorithm and the lightweight blockchain paradigm.展开更多
Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the ...Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field.展开更多
In a post-disaster environment characterized by frequent interruptions in communication links,traditional wireless communication networks are ineffective.Although the“store-carry-forward”mechanism characteristic of ...In a post-disaster environment characterized by frequent interruptions in communication links,traditional wireless communication networks are ineffective.Although the“store-carry-forward”mechanism characteristic of Delay Tolerant Networks(DTNs)can transmit data from Internet of things devices to more reliable base stations or data centres,it also suffers from inefficient data transmission and excessive transmission delays.To address these challenges,we propose an intelligent routing strategy based on node sociability for post-disaster emergency network scenarios.First,we introduce an intelligent routing strategy based on node intimacy,which selects more suitable relay nodes and assigns the corresponding number of message copies based on comprehensive utility values.Second,we present an intelligent routing strategy based on geographical location of nodes to forward message replicas secondarily based on transmission utility values.Finally,experiments demonstrate the effectiveness of our proposed algorithm in terms of message delivery rate,network cost ratio and average transmission delay.展开更多
The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication ...The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication standards.The Single Carrier Frequency Division Multiple Access(SC-FDMA)is adopted for broadband wireless communications,because of its low sensitivity to carrier frequency offsets and low Peak-to-Average Power Ratio(PAPR).Data transmission through open-channel networks requires much concentration on security,reliability,and integrity.The data need a space away fromunauthorized access,modification,or deletion.These requirements are to be fulfilled by digital image watermarking and encryption.This paper ismainly concerned with secure image communication over the wireless SC-FDMA systemas an adopted communication standard.It introduces a robust image communication framework over SC-FDMA that comprises digital image watermarking and encryption to improve image security,while maintaining a high-quality reconstruction of images at the receiver side.The proposed framework allows image watermarking based on the Discrete Cosine Transform(DCT)merged with the Singular Value Decomposition(SVD)in the so-called DCT-SVD watermarking.In addition,image encryption is implemented based on chaos and DNA encoding.The encrypted watermarked images are then transmitted through the wireless SC-FDMA system.The linearMinimumMean Square Error(MMSE)equalizer is investigated in this paper to mitigate the effect of channel fading and noise on the transmitted images.Two subcarrier mapping schemes,namely localized and interleaved schemes,are compared in this paper.The study depends on different channelmodels,namely PedestrianAandVehicularA,with a modulation technique namedQuadratureAmplitude Modulation(QAM).Extensive simulation experiments are conducted and introduced in this paper for efficient transmission of encrypted watermarked images.In addition,different variants of SC-FDMA based on the Discrete Wavelet Transform(DWT),Discrete Cosine Transform(DCT),and Fast Fourier Transform(FFT)are considered and compared for the image communication task.The simulation results and comparison demonstrate clearly that DWT-SC-FDMAis better suited to the transmission of the digital images in the case of PedestrianAchannels,while the DCT-SC-FDMA is better suited to the transmission of the digital images in the case of Vehicular A channels.展开更多
Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format fo...Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format for subsequent processing.Successfully recognizing complex and intricately shaped handwritten characters remains a significant obstacle.The use of convolutional neural network(CNN)in recent developments has notably advanced HCR,leveraging the ability to extract discriminative features from extensive sets of raw data.Because of the absence of pre-existing datasets in the Kurdish language,we created a Kurdish handwritten dataset called(KurdSet).The dataset consists of Kurdish characters,digits,texts,and symbols.The dataset consists of 1560 participants and contains 45,240 characters.In this study,we chose characters only from our dataset.We utilized a Kurdish dataset for handwritten character recognition.The study also utilizes various models,including InceptionV3,Xception,DenseNet121,and a customCNNmodel.To show the performance of the KurdSet dataset,we compared it to Arabic handwritten character recognition dataset(AHCD).We applied the models to both datasets to show the performance of our dataset.Additionally,the performance of the models is evaluated using test accuracy,which measures the percentage of correctly classified characters in the evaluation phase.All models performed well in the training phase,DenseNet121 exhibited the highest accuracy among the models,achieving a high accuracy of 99.80%on the Kurdish dataset.And Xception model achieved 98.66%using the Arabic dataset.展开更多
Fraud of credit cards is a major issue for financial organizations and individuals.As fraudulent actions become more complex,a demand for better fraud detection systems is rising.Deep learning approaches have shown pr...Fraud of credit cards is a major issue for financial organizations and individuals.As fraudulent actions become more complex,a demand for better fraud detection systems is rising.Deep learning approaches have shown promise in several fields,including detecting credit card fraud.However,the efficacy of these models is heavily dependent on the careful selection of appropriate hyperparameters.This paper introduces models that integrate deep learning models with hyperparameter tuning techniques to learn the patterns and relationships within credit card transaction data,thereby improving fraud detection.Three deep learning models:AutoEncoder(AE),Convolution Neural Network(CNN),and Long Short-Term Memory(LSTM)are proposed to investigate how hyperparameter adjustment impacts the efficacy of deep learning models used to identify credit card fraud.The experiments conducted on a European credit card fraud dataset using different hyperparameters and three deep learning models demonstrate that the proposed models achieve a tradeoff between detection rate and precision,leading these models to be effective in accurately predicting credit card fraud.The results demonstrate that LSTM significantly outperformed AE and CNN in terms of accuracy(99.2%),detection rate(93.3%),and area under the curve(96.3%).These proposed models have surpassed those of existing studies and are expected to make a significant contribution to the field of credit card fraud detection.展开更多
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo...The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks.展开更多
The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure ...The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.展开更多
基金Author extends his appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding and supporting this work through Graduate Student Research Support Program.
文摘Improving the quality assurance (QA) processes and acquiring accreditation are top priorities for academic programs. The learning outcomes (LOs)assessment and continuous quality improvement represent core components ofthe quality assurance system (QAS). Current assessment methods suffer deficiencies related to accuracy and reliability, and they lack well-organized processes forcontinuous improvement planning. Moreover, the absence of automation, andintegration in QA processes forms a major obstacle towards developing efficientquality system. There is a pressing need to adopt security protocols that providerequired security services to safeguard the valuable information processed byQAS as well. This research proposes an effective methodology for LOs assessment and continuous improvement processes. The proposed approach ensuresmore accurate and reliable LOs assessment results and provides systematic wayfor utilizing those results in the continuous quality improvement. This systematicand well-specified QA processes were then utilized to model and implement automated and secure QAS that efficiently performs quality-related processes. Theproposed system adopts two security protocols that provide confidentiality, integrity, and authentication for quality data and reports. The security protocols avoidthe source repudiation, which is important in the quality reporting system. This isachieved through implementing powerful cryptographic algorithms. The QASenables efficient data collection and processing required for analysis and interpretation. It also prepares for the development of datasets that can be used in futureartificial intelligence (AI) researches to support decision making and improve thequality of academic programs. The proposed approach is implemented in a successful real case study for a computer science program. The current study servesscientific programs struggling to achieve academic accreditation, and gives rise tofully automating and integrating the QA processes and adopting modern AI andsecurity technologies to develop effective QAS.
文摘Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.
文摘Bitcoin has gained widespread acceptance within the cryptocurrency community, and the Lightning network, an innovative and scalable extension of Bitcoin, is demonstrating remarkable advancements in electronic payments. The Lightning network addresses the historical criticisms of Bitcoin by facilitating rapid transfers at reduced costs, addressing scalability concerns. However, despite its potential, integrating the Lightning network into diverse systems has proven challenging due to inherent system heterogeneity. This study seeks to overcome these challenges by contributing to the effective implementation of a micropayment system, specifically targeting microtransactions involving individuals outside developing countries, with a focus on the diaspora regularly transferring money to their loved ones. Our objective is to establish a decentralized microtransaction system in Burkina Faso, within the broader context of pursuing monetary independence. We have developed and implemented a prototype microtransaction system, leveraging a transfer application that combines the Lightning network blockchain and mobile money. This unique solution not only integrates local African currencies but also enables direct payments for services and goods at local establishments, fostering economic inclusivity and financial autonomy.
文摘The NIST Cybersecurity Framework (NIST CSF) serves as a voluntary guideline aimed at helping organizations, tiny and medium-sized enterprises (SMEs), and critical infrastructure operators, effectively manage cyber risks. Although comprehensive, the complexity of the NIST CSF can be overwhelming, especially for those lacking extensive cybersecurity resources. Current implementation tools often cater to larger companies, neglecting the specific needs of SMEs, which can be vulnerable to cyber threats. To address this gap, our research proposes a user-friendly, open-source web platform designed to simplify the implementation of the NIST CSF. This platform enables organizations to assess their risk exposure and continuously monitor their cybersecurity maturity through tailored recommendations based on their unique profiles. Our methodology includes a literature review of existing tools and standards, followed by a description of the platform’s design and architecture. Initial tests with SMEs in Burkina Faso reveal a concerning cybersecurity maturity level, indicating the urgent need for improved strategies based on our findings. By offering an intuitive interface and cross-platform accessibility, this solution aims to empower organizations to enhance their cybersecurity resilience in an evolving threat landscape. The article concludes with discussions on the practical implications and future enhancements of the tool.
基金This work is supported,in part,by the National Natural Science Foundation of China under grant numbers U1536206,U1405254,61772283,61602253,61672294,61502242In part,by the Jiangsu Basic Research Programs-Natural Science Foundation under grant numbers BK20150925 and BK20151530+1 种基金In part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fundIn part,by the Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET)fund,China.
文摘Currently,some photorealistic computer graphics are very similar to photographic images.Photorealistic computer generated graphics can be forged as photographic images,causing serious security problems.The aim of this work is to use a deep neural network to detect photographic images(PI)versus computer generated graphics(CG).In existing approaches,image feature classification is computationally intensive and fails to achieve realtime analysis.This paper presents an effective approach to automatically identify PI and CG based on deep convolutional neural networks(DCNNs).Compared with some existing methods,the proposed method achieves real-time forensic tasks by deepening the network structure.Experimental results show that this approach can effectively identify PI and CG with average detection accuracy of 98%.
基金Data and Artificial Intelligence Scientific Chair at Umm AlQura University.
文摘Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tracks the situation of the software and hardware operating on the network.Notwithstanding advancements of growth,current intrusion detection systems also experience difficulties in enhancing detection precision,growing false alarm levels and identifying suspicious activities.In order to address above mentioned issues,several researchers concentrated on designing intrusion detection systems that rely on machine learning approaches.Machine learning models will accurately identify the underlying variations among regular information and irregular information with incredible efficiency.Artificial intelligence,particularly machine learning methods can be used to develop an intelligent intrusion detection framework.There in this article in order to achieve this objective,we propose an intrusion detection system focused on a Deep extreme learning machine(DELM)which first establishes the assessment of safety features that lead to their prominence and then constructs an adaptive intrusion detection system focusing on the important features.In the moment,we researched the viability of our suggested DELMbased intrusion detection system by conducting dataset assessments and evaluating the performance factors to validate the system reliability.The experimental results illustrate that the suggested framework outclasses traditional algorithms.In fact,the suggested framework is not only of interest to scientific research but also of functional importance.
基金supported by the Researchers Supporting Project (No.RSP-2021/395),King Saud University,Riyadh,Saudi Arabia.
文摘A deep fusion model is proposed for facial expression-based human-computer Interaction system.Initially,image preprocessing,i.e.,the extraction of the facial region from the input image is utilized.Thereafter,the extraction of more discriminative and distinctive deep learning features is achieved using extracted facial regions.To prevent overfitting,in-depth features of facial images are extracted and assigned to the proposed convolutional neural network(CNN)models.Various CNN models are then trained.Finally,the performance of each CNN model is fused to obtain the final decision for the seven basic classes of facial expressions,i.e.,fear,disgust,anger,surprise,sadness,happiness,neutral.For experimental purposes,three benchmark datasets,i.e.,SFEW,CK+,and KDEF are utilized.The performance of the proposed systemis compared with some state-of-the-artmethods concerning each dataset.Extensive performance analysis reveals that the proposed system outperforms the competitive methods in terms of various performance metrics.Finally,the proposed deep fusion model is being utilized to control a music player using the recognized emotions of the users.
文摘There is a great need to provide educational environments for blind and handicapped people. There are many Islamic websites and applications dedicated to the educational services for the Holy Quran and Its Sciences (Quran Recitations, the interpretations, etc.) on the Internet. Unfortunately, blind and handicapped people could not use these services. These people cannot use the keyboard and the mouse. In addition, the ability to read and write is essential to benefit from these services. In this paper, we present an educational environment that allows these people to take full advantage of the scientific materials. This is done through the interaction with the system using voice commands by speaking directly without the need to write or to use the mouse. Google Speech API is used for the universal speech recognition after a preprocessing and post processing phases to improve the accuracy. For blind people, responses of these commands will be played back through the audio device instead of displaying the text to the screen. The text will be displayed on the screen to help other people make use of the system.
基金Authors would like to acknowledge the support of the Deputy for Research and Innovation-Ministry of Education,Kingdom of Saudi Arabia for funding this research through a project(NU/IFC/ENT/01/014)under the institutional funding committee at Najran University,Kingdom of Saudi Arabia.
文摘Assistive devices for disabled people with the help of Brain-Computer Interaction(BCI)technology are becoming vital bio-medical engineering.People with physical disabilities need some assistive devices to perform their daily tasks.In these devices,higher latency factors need to be addressed appropriately.Therefore,the main goal of this research is to implement a real-time BCI architecture with minimum latency for command actuation.The proposed architecture is capable to communicate between different modules of the system by adopting an automotive,intelligent data processing and classification approach.Neuro-sky mind wave device has been used to transfer the data to our implemented server for command propulsion.Think-Net Convolutional Neural Network(TN-CNN)architecture has been proposed to recognize the brain signals and classify them into six primary mental states for data classification.Data collection and processing are the responsibility of the central integrated server for system load minimization.Testing of implemented architecture and deep learning model shows excellent results.The proposed system integrity level was the minimum data loss and the accurate commands processing mechanism.The training and testing results are 99%and 93%for custom model implementation based on TN-CNN.The proposed real-time architecture is capable of intelligent data processing unit with fewer errors,and it will benefit assistive devices working on the local server and cloud server.
文摘Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.To understand the dynamics of the virus propagation in a better way,a computer virus spread model with fuzzy parameters is presented in this work.It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity,which depends on the quantity of virus.Considering this,the parametersβandγbeing functions of the computer virus load,are considered fuzzy numbers.Using fuzzy theory helps us understand the spread of computer viruses more realistically as these parameters have fixed values in classical models.The essential features of the model,like reproduction number and equilibrium analysis,are discussed in fuzzy senses.Moreover,with fuzziness,two numerical methods,the forward Euler technique,and a nonstandard finite difference(NSFD)scheme,respectively,are developed and analyzed.In the evidence of the numerical simulations,the proposed NSFD method preserves the main features of the dynamic system.It can be considered a reliable tool to predict such types of solutions.
文摘Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revolutionized the Fourth Industrial Revolution by enabling interconnected devices to offer innovative services,ultimately enhancing human lives.This paper presents a new approach utilizing lightweight blockchain technology,effectively reducing the computational burden typically associated with conventional blockchain systems.By integrating this lightweight blockchain with IoT systems,substantial reductions in implementation time and computational complexity can be achieved.Moreover,the paper proposes the utilization of the Okamoto Uchiyama encryption algorithm,renowned for its homomorphic characteristics,to reinforce the privacy and security of IoT-generated data.The integration of homomorphic encryption and blockchain technology establishes a secure and decentralized platformfor storing and analyzing sensitive data of the supply chain data.This platformfacilitates the development of some business models and empowers decentralized applications to perform computations on encrypted data while maintaining data privacy.The results validate the robust security of the proposed system,comparable to standard blockchain implementations,leveraging the distinctive homomorphic attributes of the Okamoto Uchiyama algorithm and the lightweight blockchain paradigm.
基金We acknowledge funding from NSFC Grant 62306283.
文摘Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field.
基金funded by the Researchers Supporting Project Number RSPD2024R681,King Saud University,Riyadh,Saudi Arabia.
文摘In a post-disaster environment characterized by frequent interruptions in communication links,traditional wireless communication networks are ineffective.Although the“store-carry-forward”mechanism characteristic of Delay Tolerant Networks(DTNs)can transmit data from Internet of things devices to more reliable base stations or data centres,it also suffers from inefficient data transmission and excessive transmission delays.To address these challenges,we propose an intelligent routing strategy based on node sociability for post-disaster emergency network scenarios.First,we introduce an intelligent routing strategy based on node intimacy,which selects more suitable relay nodes and assigns the corresponding number of message copies based on comprehensive utility values.Second,we present an intelligent routing strategy based on geographical location of nodes to forward message replicas secondarily based on transmission utility values.Finally,experiments demonstrate the effectiveness of our proposed algorithm in terms of message delivery rate,network cost ratio and average transmission delay.
基金the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding After Publication,Grant No.(44-PRFA-P-131).
文摘The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication standards.The Single Carrier Frequency Division Multiple Access(SC-FDMA)is adopted for broadband wireless communications,because of its low sensitivity to carrier frequency offsets and low Peak-to-Average Power Ratio(PAPR).Data transmission through open-channel networks requires much concentration on security,reliability,and integrity.The data need a space away fromunauthorized access,modification,or deletion.These requirements are to be fulfilled by digital image watermarking and encryption.This paper ismainly concerned with secure image communication over the wireless SC-FDMA systemas an adopted communication standard.It introduces a robust image communication framework over SC-FDMA that comprises digital image watermarking and encryption to improve image security,while maintaining a high-quality reconstruction of images at the receiver side.The proposed framework allows image watermarking based on the Discrete Cosine Transform(DCT)merged with the Singular Value Decomposition(SVD)in the so-called DCT-SVD watermarking.In addition,image encryption is implemented based on chaos and DNA encoding.The encrypted watermarked images are then transmitted through the wireless SC-FDMA system.The linearMinimumMean Square Error(MMSE)equalizer is investigated in this paper to mitigate the effect of channel fading and noise on the transmitted images.Two subcarrier mapping schemes,namely localized and interleaved schemes,are compared in this paper.The study depends on different channelmodels,namely PedestrianAandVehicularA,with a modulation technique namedQuadratureAmplitude Modulation(QAM).Extensive simulation experiments are conducted and introduced in this paper for efficient transmission of encrypted watermarked images.In addition,different variants of SC-FDMA based on the Discrete Wavelet Transform(DWT),Discrete Cosine Transform(DCT),and Fast Fourier Transform(FFT)are considered and compared for the image communication task.The simulation results and comparison demonstrate clearly that DWT-SC-FDMAis better suited to the transmission of the digital images in the case of PedestrianAchannels,while the DCT-SC-FDMA is better suited to the transmission of the digital images in the case of Vehicular A channels.
文摘Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format for subsequent processing.Successfully recognizing complex and intricately shaped handwritten characters remains a significant obstacle.The use of convolutional neural network(CNN)in recent developments has notably advanced HCR,leveraging the ability to extract discriminative features from extensive sets of raw data.Because of the absence of pre-existing datasets in the Kurdish language,we created a Kurdish handwritten dataset called(KurdSet).The dataset consists of Kurdish characters,digits,texts,and symbols.The dataset consists of 1560 participants and contains 45,240 characters.In this study,we chose characters only from our dataset.We utilized a Kurdish dataset for handwritten character recognition.The study also utilizes various models,including InceptionV3,Xception,DenseNet121,and a customCNNmodel.To show the performance of the KurdSet dataset,we compared it to Arabic handwritten character recognition dataset(AHCD).We applied the models to both datasets to show the performance of our dataset.Additionally,the performance of the models is evaluated using test accuracy,which measures the percentage of correctly classified characters in the evaluation phase.All models performed well in the training phase,DenseNet121 exhibited the highest accuracy among the models,achieving a high accuracy of 99.80%on the Kurdish dataset.And Xception model achieved 98.66%using the Arabic dataset.
文摘Fraud of credit cards is a major issue for financial organizations and individuals.As fraudulent actions become more complex,a demand for better fraud detection systems is rising.Deep learning approaches have shown promise in several fields,including detecting credit card fraud.However,the efficacy of these models is heavily dependent on the careful selection of appropriate hyperparameters.This paper introduces models that integrate deep learning models with hyperparameter tuning techniques to learn the patterns and relationships within credit card transaction data,thereby improving fraud detection.Three deep learning models:AutoEncoder(AE),Convolution Neural Network(CNN),and Long Short-Term Memory(LSTM)are proposed to investigate how hyperparameter adjustment impacts the efficacy of deep learning models used to identify credit card fraud.The experiments conducted on a European credit card fraud dataset using different hyperparameters and three deep learning models demonstrate that the proposed models achieve a tradeoff between detection rate and precision,leading these models to be effective in accurately predicting credit card fraud.The results demonstrate that LSTM significantly outperformed AE and CNN in terms of accuracy(99.2%),detection rate(93.3%),and area under the curve(96.3%).These proposed models have surpassed those of existing studies and are expected to make a significant contribution to the field of credit card fraud detection.
文摘The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks.
基金support of the Interdisciplinary Research Center for Intelligent Secure Systems(IRC-ISS)Internal Fund Grant#INSS2202.
文摘The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.