期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Heart Rate Variability Applied to Short-Term Cardiovascular Event Risk Assessment
1
作者 Simao Paredes Teresa Rocha +3 位作者 Paulo de Carvalho Jorge Henriques Ramona Cabiddu Joao Morais 《Engineering(科研)》 2013年第10期237-243,共7页
Cardiovascular disease (CVD) risk assessment is an important instrument to enhance the clinical decision in the daily practice as well as to improve the preventive health care promoting the transfer from the hospital ... Cardiovascular disease (CVD) risk assessment is an important instrument to enhance the clinical decision in the daily practice as well as to improve the preventive health care promoting the transfer from the hospital to patient’s home. Due to its importance, clinical guidelines recommend the use of risk scores to predict the risk of a cardiovascular disease event. Therefore, there are several well known risk assessment tools, unfortunately they present some limitations.This work addresses this problem with two different methodologies:1) combination of risk assessment tools based on fusion of Bayesian classifiers complemented with genetic algorithm optimization;2) personalization of risk assessment through the creation of groups of patients that maximize the performance of each risk assessment tool. This last approach is implemented based on subtractive clustering applied to a reduced-dimension space.Both methodologies were developed to short-term CVD risk prediction for patients with Acute Coronary Syndromes without ST segment eleva-tion (ACS-NSTEMI). Two different real patients’ datasets were considered to validate the developed strategies:1) Santa Cruz Hospital, Portugal, N=460 patients;2)LeiriaPombal Hospital Centre, Portugal, N=99 patients.This work improved the performance in relation to current risk assessment tools reaching maximum values of sensitivity, specificity and geometric mean of, respectively, 80.0%, 82.9%, 81.5%. Besides this enhancement, the proposed methodologies allow the incorporation of new risk factors, deal with missing risk factors and avoid the selection of a single tool to be applied in the daily clinical practice. In spite of these achievements, the CVD risk assessment (patient stratification) should be improved. The incorporation of new risk factors recognized as clinically significant, namely parameters derived from heart rate variability (HRV), is introduced in this work. HRV is a strong and independent predictor of mortality in patients following acute myocardial infarction. The impact of HRV parameters in the characterization of coronary artery disease (CAD) patients will be conducted during hospitalization of these patients in the Leiria-Pombal Hospital Centre (LPHC). 展开更多
关键词 CVD Risk Assessment Knowledge Management Management of Cardiovascular Diseases Decision-Support Systems
在线阅读 下载PDF
Efficient Handling of Lock Hand-off in DSM Multiprocessors with Buffering Coherence Controllers 被引量:1
2
作者 Benjamín Sahelices Agustín de Dios +2 位作者 Pablo Ibáez Víctor Vials-Yúfera José María Llabería 《Journal of Computer Science & Technology》 SCIE EI CSCD 2012年第1期75-91,共17页
Synchronization in parallel programs is a major performance bottleneck in multiprocessor systems. Shared data is protected by locks and a lot of time is spent on the competition arising at the lock hand-off. In order ... Synchronization in parallel programs is a major performance bottleneck in multiprocessor systems. Shared data is protected by locks and a lot of time is spent on the competition arising at the lock hand-off. In order to be serialized, requests to the same cache line can either be bounced (NACKed) or buffered in the coherence controller. In this paper, we focus mainly on systems whose coherence controllers buffer requests. In a lock hand-off, a burst of requests to the same line arrive at the coherence controller. During lock hand-off only the requests from the winning processor contribute to progress of the computation, since the winning processor is the only one that will advance the work. This key observation leads us to propose a hardware mechanism we call request bypassing, which allows requests from the winning processor to bypass the requests buffered in the coherence controller keeping the lock line. We present an inexpensive implementation of request bypassing that reduces the time spent on all the execution phases of a critical section (acquiring the lock, accessing shared data, and releasing the lock) and which, as a consequence, speeds up the whole parallel computation. This mechanism requires neither compiler or programmer support nor ISA or coherence protocol changes. By simulating a 32-processor system, we show that using request bypassing does not degrade but rather improves performance in three applications with low synchronization rates, while in those having a large amount of synchronization activity (the remaining four), we see reductions in execution time and in lock stall time ranging from 14% to 39% and from 52% to 7170, respectively. We compare request bypassing with a previously proposed technique called read combining and with a system that bounces requests, observing a significantly lower execution time with the bypassing scheme. Finally, we analyze the sensitivity of our results to some key hardware and software parameters. 展开更多
关键词 distributed shared memory multiprocessors synchronization buffer coherence controller request bypass
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部