This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing singl...This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.展开更多
This paper studies the distributed H∞control problem of identical linear time invariant multi-agent systems subject to external disturbances. A directed graph containing a spanning tree is used to model the communica...This paper studies the distributed H∞control problem of identical linear time invariant multi-agent systems subject to external disturbances. A directed graph containing a spanning tree is used to model the communication topology. Based on the relative states of the neighbor agents and a subset of absolute states of the agents, distributed static H∞controllers are proposed. The concept of an H∞performance region is extended to the directed graph situation. Then the results are used to solve the leader–follower H∞consensus problem. Sufficient conditions are proposed based on bounded real lemma and algebraic graph theory. The effectiveness of the theoretical results is illustrated via numerical simulations.展开更多
A novel hybrid robust three-axis attitude control approach, namely HRTAC, is considered along with the well-known developments in the area of space systems, since there is a consensus among the related experts that th...A novel hybrid robust three-axis attitude control approach, namely HRTAC, is considered along with the well-known developments in the area of space systems, since there is a consensus among the related experts that the new insights may be taken into account as decision points to outperform the available materials. It is to note that the traditional control approaches may generally be upgraded, as long as a number of modifications are made with respect to state-of-the-art, in order to propose high-precision outcomes. Regarding the investigated issues, the robust sliding mode finite-time control approach is first designed to handle three-axis angular rates in the inner control loop, which consists of the pulse width pulse frequency modulations in line with the control allocation scheme and the system dynamics. The main subject to employ these modulations that is realizing in association with the control allocation scheme is to be able to handle a class of overactuated systems, in particular. The proportional derivative based linear quadratic regulator approach is then designed to handle three-axis rotational angles in the outer control loop, which consists of the system kinematics that is correspondingly concentrated to deal with the quaternion based model. The utilization of the linear and its nonlinear terms, simultaneously, are taken into real consideration as the research motivation, while the performance results are of the significance as the improved version in comparison with the recent investigated outcomes. Subsequently, there is a stability analysis to verify and guarantee the closed loop system performance in coping with the whole of nominal referenced commands. At the end, the effectiveness of the approach considered here is highlighted in line with a number of potential recent benchmarks.展开更多
The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique...The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique.The proposed composite nonlinear feedback control approach consists of two parts.In a word,the first part provides the stability of the closed-loop system and the fast convergence response,as long as the second one improves transient response.In this research,the genetic algorithm in line with the fuzzy logic is designed to calculate constant controller coefficients and optimize the control effort.The effectiveness of the proposed design is demonstrated by servo position control system and inverted pendulum system with DC motor simulation results.展开更多
A certain backstepping control is proposed for synchronization of a class of hyper-chaotic systems.Only two control inputs are used to realize synchronization between hyper-chaotic systems,and the control avoids the p...A certain backstepping control is proposed for synchronization of a class of hyper-chaotic systems.Only two control inputs are used to realize synchronization between hyper-chaotic systems,and the control avoids the possible singularity in the virtual control design.In addition,the adaptive backstepping control is proposed for the synchronization when the system parameters are unknown.The proposed methods can be applied to a variety of chaos systems which can be described by the so-called cross-strict feedback form.Numerical simulations are given to demonstrate the efficiency of the proposed control schemes.展开更多
Aimed at the requirements for electric transmission system of a military tracked vehicle, the motor's design indexes were analysed and calculated. A model based on saturate inductance parameter of interior permane...Aimed at the requirements for electric transmission system of a military tracked vehicle, the motor's design indexes were analysed and calculated. A model based on saturate inductance parameter of interior permanent magnet (IPM) synchronous motor was brought forward by using finite element analysis. And its control strategy based on the largest running capability was studied also. The experiment results for a scale model show that the modelling method improves the model's accuracy, and the motor's control strategy is effective.展开更多
This paper presents an adaptive iterative learning control(AILC) scheme for a class of nonlinear systems with unknown time-varying delays and unknown input dead-zone.A novel nonlinear form of dead-zone nonlinearity is...This paper presents an adaptive iterative learning control(AILC) scheme for a class of nonlinear systems with unknown time-varying delays and unknown input dead-zone.A novel nonlinear form of dead-zone nonlinearity is presented.The assumption of identical initial condition for iterative learning control(ILC) is removed by introducing boundary layer function.The uncertainties with time-varying delays are compensated for by using appropriate Lyapunov-Krasovskii functional and Young’s inequality.Radial basis function neural networks are used to model the time-varying uncertainties.The hyperbolic tangent function is employed to avoid the problem of singularity.According to the property of hyperbolic tangent function,the system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapunov-like composite energy function(CEF) in two cases,while keeping all the closedloop signals bounded.Finally,a simulation example is presented to verify the effectiveness of the proposed approach.展开更多
According to the study of electric transmission, the concept of the fore and the aft power chain is presented. The control method of continuously variable transmission is established in the aft chain of electric trans...According to the study of electric transmission, the concept of the fore and the aft power chain is presented. The control method of continuously variable transmission is established in the aft chain of electric transmission based on brushless DC motor. A fuzzy controller is designed with continuous fuzzy variables and the simulation module of the aft power chain is proved by test. The fuzzy controller controls the process of continuously variable transmission steadily and the acceleration of vehicle is quick according to simulation results. The elementary performance exhibited in the simulation is a foundation for the further study of the electric transmission track vehicle.展开更多
Two-dimensional(2D)moirématerials have attracted a lot of attention and opened a new research frontier of twistronics due to their novel physical properties.Although great progress has been achieved,the inability...Two-dimensional(2D)moirématerials have attracted a lot of attention and opened a new research frontier of twistronics due to their novel physical properties.Although great progress has been achieved,the inability to precisely and reproducibly manipulate the twist angle hinders the further development of twistronics.Here,we demonstrated an atomic force microscope(AFM)tip manipulation method to control the interlayer twist angle of epitaxial MoS_(2)/graphene heterostructure with an ultra-high accuracy better than 0.1°.Furthermore,conductive AFM and spectroscopic characterizations were conducted to show the effects of the twist angle on moirépattern wavelength,phonons and excitons.Our work provides a technique to precisely control the twist angle of 2D moirématerials,enabling the possibility to establish the phase diagrams of moiréphysics with twist angle.展开更多
This paper proposes the chaos control and the modified projective synchronization methods for chaotic dissipative gyroscope systems. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic ...This paper proposes the chaos control and the modified projective synchronization methods for chaotic dissipative gyroscope systems. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. Using the variable structure control technique, control laws are established which guarantees the chaos control and the modified projective synchronization. By Lyapunov stability theory, control lows are proposed to ensure the stability of the controlled and synchronized system. Numerical simulations are presented to verify the proposed control and the synchronization approach. This paper demonstrates that synchronization and anti-synchronization can coexist in dissipative gyroscope systems via variable structure control.展开更多
In recent years,intelligent robots are extensively applied in the field of the industry and intelligent rehabilitation,wherein the human-robot interaction(HRI)control strategy is a momentous part that needs to be amel...In recent years,intelligent robots are extensively applied in the field of the industry and intelligent rehabilitation,wherein the human-robot interaction(HRI)control strategy is a momentous part that needs to be ameliorated.Specially,the efficacy and robustness of the HRI control algorithm in the presence of unknown external disturbances deserve to be addressed.To deal with these urgent issues,in this study,artificial systems,computational experiments and a parallel execution intelligent control framework are constructed for the HRI control.The upper limb-robotic exoskeleton system is re-modelled as an artificial system.Depending on surface electromyogram-based subject's active motion intention in the practical system,a non-convex function activated anti-disturbance zeroing neurodynamic(NC-ADZND)controller is devised in the artificial system for parallel interaction and HRI control with the practical system.Furthermore,the linear activation function-based zeroing neurodynamic(LAF-ZND)controller and proportionalderivative(posterior deltoid(PD))controller are presented and compared.Theoretical results substantiate the global convergence and robustness of the proposed controller in the presence of different external disturbances.In addition,the simulation results verify that the NC-ADZND controller is better than the LAF-ZND and the PD controllers in respect of convergence order and anti-disturbance characteristics.展开更多
In order to improve the survival ability and rapid response ability of the carrier craft,a new rapid transfer alignment method of the strapdown inertial navigation system(SINS) on a rocking base is put forward.In th...In order to improve the survival ability and rapid response ability of the carrier craft,a new rapid transfer alignment method of the strapdown inertial navigation system(SINS) on a rocking base is put forward.In the method,the aircraft carrier does not need any form of movement.Meantime,interfering motions such as rolling,pitching,and yawing motions caused by sea waves are effectively used.Firstly,the deck flexure deformation model is made.Secondly,the state space model of transfer alignment is presented.Finally,the feasibility of this method is validated by the simulation.Simulation results show that the misalignment angle error can be estimated and reach an anticipated precision-0.2 mrad in 5 s,while the deck deformation angle error can be estimated and reach a better precision- 0.1 mrad in 20 s.展开更多
Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop ...Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop eigenvector matrix and the feedback gains are established based on two simple Smith form reductions. The approach utilizes directly the original system data and involves manipulations only on n-dimensional matrices. Furthermore, it reveals all the degrees of freedom which can be further utilized to achieve additional system specifications. An example shows the effect of the proposed approach.展开更多
For the bi-power system adopted widely in future armored vehicles,a hybrid power generator with dual stator-winding was proposed.Its structure and working principle were analyzed first,and its main parameters were det...For the bi-power system adopted widely in future armored vehicles,a hybrid power generator with dual stator-winding was proposed.Its structure and working principle were analyzed first,and its main parameters were determined and verified according to the power requirements.The system's mathematical model was established,and a decoupled control method was put forward on the basis of the instantaneous reactive power theory.For the voltage building-up,a voltage control strategy was designed on the basis of mixed reactive power compensation to implement stabilized 28V and 270V outputs simultaneously.The simulation results show that the stabilization accuracy and disturbance rejection ability of the system are improved much more than other ordinary generators.展开更多
A new sensor fault diagnosis method based on structured kernel principal component analysis (KPCA) is proposed for nonlinear processes. By performing KPCA on subsets of variables, a set of structured residuals, i.e....A new sensor fault diagnosis method based on structured kernel principal component analysis (KPCA) is proposed for nonlinear processes. By performing KPCA on subsets of variables, a set of structured residuals, i.e., scaled powers of KPCA, can be obtained in the same way as partial PCA. The structured residuals are utilized in composing an isolation scheme for sensor fault diagnosis, according to a properly designed incidence matrix. Sensor fault sensitivity and critical sensitivity are defined, based on which an incidence matrix optimization algorithm is proposed to improve the performance of the structured KPCA. The effectiveness of the proposed method is demonstrated on the simulated continuous stirred tank reactor (CSTR) process.展开更多
A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems.T...A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems.There is a consensus among experts of this field that the new outcomes in the present complicated systems modeling and control are highly appreciated with respect to state-of-the-art.The control scheme presented here is organized in line with a new integration of the linear-nonlinear control approaches,as long as the angular velocities in the three axes of the system are accurately dealt with in the inner closed loop control.And the corresponding rotation angles are dealt with in the outer closed loop control.It should be noted that the linear control in the present outer loop is first designed through proportional based linear quadratic regulator(PD based LQR) approach under optimum coefficients,while the nonlinear control in the corresponding inner loop is then realized through Lyapunov-based approach in the presence of uncertainties and disturbances.In order to complete the inner closed loop control,there is a pulse-width pulse-frequency(PWPF) modulator to be able to handle on-off thrusters.Furthermore,the number of these on-off thrusters may be increased with respect to the investigated control efforts to provide the overall accurate performance of the system,where the control allocation scheme is realized in the proposed strategy.It may be shown that the dynamics and kinematics of the unmanned aerial vehicle systems have to be investigated through the quaternion matrix and its corresponding vector to avoid presenting singularity of the results.At the end,the investigated outcomes are presented in comparison with a number of potential benchmarks to verify the approach performance.展开更多
This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(H...This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.展开更多
The JPEG2000 image compression standard is the powerful encoder which can provide phenomenal rate-control performance. The post-compression rate-distortion(PCRD) algorithm in JPEG2000 is not efficient. It requires enc...The JPEG2000 image compression standard is the powerful encoder which can provide phenomenal rate-control performance. The post-compression rate-distortion(PCRD) algorithm in JPEG2000 is not efficient. It requires encoding all coding passes even though a large contribution of them will not be contained in the final code-stream. Tier-1 encoding in the JPEG2000 standard takes a significant amount of memory and coding time. In this work, a low-complexity rate distortion method for JPEG2000 is proposed. It is relied on a reverse order for the resolution levels and the coding passes. The proposed algorithm encodes only the coding passes contained in the final code-stream and it does not need any post compression rate control part. The computational complexity of proposed algorithm is negligible, making it suitable to compression and attaining a significant performance. Simulations results show that the proposed algorithm obtained the PSNR values are comparable with the optimal PCRD.展开更多
In order to increase the productivity of microreactors, the parallelization of the microreactors is required. The performances of flow distributors can affect the product yield and fault detection ability when blockag...In order to increase the productivity of microreactors, the parallelization of the microreactors is required. The performances of flow distributors can affect the product yield and fault detection ability when blockage happens.In this research, an optimal design method to calculate the channel diameters and to determine the flow sensor location is derived based on mass balance and pressure balance models of split-and-recombine-type flow distributors(SRFDs). The model accuracy is verified by experiment data. The proposed method is applied to optimal design of SRFDs under constant flow rate operation conditions. The maximum angle difference between normal and blockage conditions at one sensor to those at the other sensors is set to be the objective function and the uniformity of flow distribution in microreactors under normal condition is also required. The diameters of each pipe in SRFDs are selected as the design variables. Simulated annealing algorithm is used to solve the optimization problem. The effectiveness of the optimal design results is demonstrated by fluid dynamics simulations. The results show that using the optimal channel diameters of SRFDs, the pressure drop in SRFD section is lower than that of the microreactor section. Meanwhile, in the case studies, only a few sensors that are located inside the SRFDs can easily detect the blockage abnormal condition in the parallelized microreactor system.展开更多
基金supported in part by the National Natural Science Foundation of China (62373065,61873304,62173048,62106023)the Innovation and Entrepreneurship Talent funding Project of Jilin Province(2022QN04)+1 种基金the Changchun Science and Technology Project (21ZY41)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (2024D09)。
文摘This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.
文摘This paper studies the distributed H∞control problem of identical linear time invariant multi-agent systems subject to external disturbances. A directed graph containing a spanning tree is used to model the communication topology. Based on the relative states of the neighbor agents and a subset of absolute states of the agents, distributed static H∞controllers are proposed. The concept of an H∞performance region is extended to the directed graph situation. Then the results are used to solve the leader–follower H∞consensus problem. Sufficient conditions are proposed based on bounded real lemma and algebraic graph theory. The effectiveness of the theoretical results is illustrated via numerical simulations.
文摘A novel hybrid robust three-axis attitude control approach, namely HRTAC, is considered along with the well-known developments in the area of space systems, since there is a consensus among the related experts that the new insights may be taken into account as decision points to outperform the available materials. It is to note that the traditional control approaches may generally be upgraded, as long as a number of modifications are made with respect to state-of-the-art, in order to propose high-precision outcomes. Regarding the investigated issues, the robust sliding mode finite-time control approach is first designed to handle three-axis angular rates in the inner control loop, which consists of the pulse width pulse frequency modulations in line with the control allocation scheme and the system dynamics. The main subject to employ these modulations that is realizing in association with the control allocation scheme is to be able to handle a class of overactuated systems, in particular. The proportional derivative based linear quadratic regulator approach is then designed to handle three-axis rotational angles in the outer control loop, which consists of the system kinematics that is correspondingly concentrated to deal with the quaternion based model. The utilization of the linear and its nonlinear terms, simultaneously, are taken into real consideration as the research motivation, while the performance results are of the significance as the improved version in comparison with the recent investigated outcomes. Subsequently, there is a stability analysis to verify and guarantee the closed loop system performance in coping with the whole of nominal referenced commands. At the end, the effectiveness of the approach considered here is highlighted in line with a number of potential recent benchmarks.
文摘The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique.The proposed composite nonlinear feedback control approach consists of two parts.In a word,the first part provides the stability of the closed-loop system and the fast convergence response,as long as the second one improves transient response.In this research,the genetic algorithm in line with the fuzzy logic is designed to calculate constant controller coefficients and optimize the control effort.The effectiveness of the proposed design is demonstrated by servo position control system and inverted pendulum system with DC motor simulation results.
基金Supported by the National Natural Science Foundation of China under Grant No 60674090.
文摘A certain backstepping control is proposed for synchronization of a class of hyper-chaotic systems.Only two control inputs are used to realize synchronization between hyper-chaotic systems,and the control avoids the possible singularity in the virtual control design.In addition,the adaptive backstepping control is proposed for the synchronization when the system parameters are unknown.The proposed methods can be applied to a variety of chaos systems which can be described by the so-called cross-strict feedback form.Numerical simulations are given to demonstrate the efficiency of the proposed control schemes.
文摘Aimed at the requirements for electric transmission system of a military tracked vehicle, the motor's design indexes were analysed and calculated. A model based on saturate inductance parameter of interior permanent magnet (IPM) synchronous motor was brought forward by using finite element analysis. And its control strategy based on the largest running capability was studied also. The experiment results for a scale model show that the modelling method improves the model's accuracy, and the motor's control strategy is effective.
文摘This paper presents an adaptive iterative learning control(AILC) scheme for a class of nonlinear systems with unknown time-varying delays and unknown input dead-zone.A novel nonlinear form of dead-zone nonlinearity is presented.The assumption of identical initial condition for iterative learning control(ILC) is removed by introducing boundary layer function.The uncertainties with time-varying delays are compensated for by using appropriate Lyapunov-Krasovskii functional and Young’s inequality.Radial basis function neural networks are used to model the time-varying uncertainties.The hyperbolic tangent function is employed to avoid the problem of singularity.According to the property of hyperbolic tangent function,the system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapunov-like composite energy function(CEF) in two cases,while keeping all the closedloop signals bounded.Finally,a simulation example is presented to verify the effectiveness of the proposed approach.
文摘According to the study of electric transmission, the concept of the fore and the aft power chain is presented. The control method of continuously variable transmission is established in the aft chain of electric transmission based on brushless DC motor. A fuzzy controller is designed with continuous fuzzy variables and the simulation module of the aft power chain is proved by test. The fuzzy controller controls the process of continuously variable transmission steadily and the acceleration of vehicle is quick according to simulation results. The elementary performance exhibited in the simulation is a foundation for the further study of the electric transmission track vehicle.
基金Project supported by the Natioanl Natural Science Foundation of China(Grant Nos.62122084,12074412,61888102,and 11834017)。
文摘Two-dimensional(2D)moirématerials have attracted a lot of attention and opened a new research frontier of twistronics due to their novel physical properties.Although great progress has been achieved,the inability to precisely and reproducibly manipulate the twist angle hinders the further development of twistronics.Here,we demonstrated an atomic force microscope(AFM)tip manipulation method to control the interlayer twist angle of epitaxial MoS_(2)/graphene heterostructure with an ultra-high accuracy better than 0.1°.Furthermore,conductive AFM and spectroscopic characterizations were conducted to show the effects of the twist angle on moirépattern wavelength,phonons and excitons.Our work provides a technique to precisely control the twist angle of 2D moirématerials,enabling the possibility to establish the phase diagrams of moiréphysics with twist angle.
文摘This paper proposes the chaos control and the modified projective synchronization methods for chaotic dissipative gyroscope systems. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. Using the variable structure control technique, control laws are established which guarantees the chaos control and the modified projective synchronization. By Lyapunov stability theory, control lows are proposed to ensure the stability of the controlled and synchronized system. Numerical simulations are presented to verify the proposed control and the synchronization approach. This paper demonstrates that synchronization and anti-synchronization can coexist in dissipative gyroscope systems via variable structure control.
基金Key Science and Technology Projects of Jilin Province,China,Grant/Award Number:20230204081YYChangchun Science and Technology Project,Grant/Award Number:21ZY41National Natural Science Foundation of China,Grant/Award Numbers:61873304,62173048,62106023。
文摘In recent years,intelligent robots are extensively applied in the field of the industry and intelligent rehabilitation,wherein the human-robot interaction(HRI)control strategy is a momentous part that needs to be ameliorated.Specially,the efficacy and robustness of the HRI control algorithm in the presence of unknown external disturbances deserve to be addressed.To deal with these urgent issues,in this study,artificial systems,computational experiments and a parallel execution intelligent control framework are constructed for the HRI control.The upper limb-robotic exoskeleton system is re-modelled as an artificial system.Depending on surface electromyogram-based subject's active motion intention in the practical system,a non-convex function activated anti-disturbance zeroing neurodynamic(NC-ADZND)controller is devised in the artificial system for parallel interaction and HRI control with the practical system.Furthermore,the linear activation function-based zeroing neurodynamic(LAF-ZND)controller and proportionalderivative(posterior deltoid(PD))controller are presented and compared.Theoretical results substantiate the global convergence and robustness of the proposed controller in the presence of different external disturbances.In addition,the simulation results verify that the NC-ADZND controller is better than the LAF-ZND and the PD controllers in respect of convergence order and anti-disturbance characteristics.
基金supported by the Photoelectric Control Technology Project of National Defense Science and Technology Key Laboratory of China(20120224006)
文摘In order to improve the survival ability and rapid response ability of the carrier craft,a new rapid transfer alignment method of the strapdown inertial navigation system(SINS) on a rocking base is put forward.In the method,the aircraft carrier does not need any form of movement.Meantime,interfering motions such as rolling,pitching,and yawing motions caused by sea waves are effectively used.Firstly,the deck flexure deformation model is made.Secondly,the state space model of transfer alignment is presented.Finally,the feasibility of this method is validated by the simulation.Simulation results show that the misalignment angle error can be estimated and reach an anticipated precision-0.2 mrad in 5 s,while the deck deformation angle error can be estimated and reach a better precision- 0.1 mrad in 20 s.
文摘Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop eigenvector matrix and the feedback gains are established based on two simple Smith form reductions. The approach utilizes directly the original system data and involves manipulations only on n-dimensional matrices. Furthermore, it reveals all the degrees of freedom which can be further utilized to achieve additional system specifications. An example shows the effect of the proposed approach.
文摘For the bi-power system adopted widely in future armored vehicles,a hybrid power generator with dual stator-winding was proposed.Its structure and working principle were analyzed first,and its main parameters were determined and verified according to the power requirements.The system's mathematical model was established,and a decoupled control method was put forward on the basis of the instantaneous reactive power theory.For the voltage building-up,a voltage control strategy was designed on the basis of mixed reactive power compensation to implement stabilized 28V and 270V outputs simultaneously.The simulation results show that the stabilization accuracy and disturbance rejection ability of the system are improved much more than other ordinary generators.
基金supported by Scientific Reserch Fund of SiChuan Provincial Education Department (No.07ZB013)by the Scientific ResearchFoundation of CUIT (No.CSRF200704)
文摘A new sensor fault diagnosis method based on structured kernel principal component analysis (KPCA) is proposed for nonlinear processes. By performing KPCA on subsets of variables, a set of structured residuals, i.e., scaled powers of KPCA, can be obtained in the same way as partial PCA. The structured residuals are utilized in composing an isolation scheme for sensor fault diagnosis, according to a properly designed incidence matrix. Sensor fault sensitivity and critical sensitivity are defined, based on which an incidence matrix optimization algorithm is proposed to improve the performance of the structured KPCA. The effectiveness of the proposed method is demonstrated on the simulated continuous stirred tank reactor (CSTR) process.
基金the Islamic Azad University (IAU),South Tehran Branch,Tehran,Iran in support of the present research
文摘A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems.There is a consensus among experts of this field that the new outcomes in the present complicated systems modeling and control are highly appreciated with respect to state-of-the-art.The control scheme presented here is organized in line with a new integration of the linear-nonlinear control approaches,as long as the angular velocities in the three axes of the system are accurately dealt with in the inner closed loop control.And the corresponding rotation angles are dealt with in the outer closed loop control.It should be noted that the linear control in the present outer loop is first designed through proportional based linear quadratic regulator(PD based LQR) approach under optimum coefficients,while the nonlinear control in the corresponding inner loop is then realized through Lyapunov-based approach in the presence of uncertainties and disturbances.In order to complete the inner closed loop control,there is a pulse-width pulse-frequency(PWPF) modulator to be able to handle on-off thrusters.Furthermore,the number of these on-off thrusters may be increased with respect to the investigated control efforts to provide the overall accurate performance of the system,where the control allocation scheme is realized in the proposed strategy.It may be shown that the dynamics and kinematics of the unmanned aerial vehicle systems have to be investigated through the quaternion matrix and its corresponding vector to avoid presenting singularity of the results.At the end,the investigated outcomes are presented in comparison with a number of potential benchmarks to verify the approach performance.
基金supported by the National Natural Science Foundation of China(6120300761304239+1 种基金61503392)the Natural Science Foundation of Shaanxi Province(2015JQ6213)
文摘This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.
文摘The JPEG2000 image compression standard is the powerful encoder which can provide phenomenal rate-control performance. The post-compression rate-distortion(PCRD) algorithm in JPEG2000 is not efficient. It requires encoding all coding passes even though a large contribution of them will not be contained in the final code-stream. Tier-1 encoding in the JPEG2000 standard takes a significant amount of memory and coding time. In this work, a low-complexity rate distortion method for JPEG2000 is proposed. It is relied on a reverse order for the resolution levels and the coding passes. The proposed algorithm encodes only the coding passes contained in the final code-stream and it does not need any post compression rate control part. The computational complexity of proposed algorithm is negligible, making it suitable to compression and attaining a significant performance. Simulations results show that the proposed algorithm obtained the PSNR values are comparable with the optimal PCRD.
基金Supported by the National Natural Science Foundation of China(21466026,61364009)NJZZ(14054)
文摘In order to increase the productivity of microreactors, the parallelization of the microreactors is required. The performances of flow distributors can affect the product yield and fault detection ability when blockage happens.In this research, an optimal design method to calculate the channel diameters and to determine the flow sensor location is derived based on mass balance and pressure balance models of split-and-recombine-type flow distributors(SRFDs). The model accuracy is verified by experiment data. The proposed method is applied to optimal design of SRFDs under constant flow rate operation conditions. The maximum angle difference between normal and blockage conditions at one sensor to those at the other sensors is set to be the objective function and the uniformity of flow distribution in microreactors under normal condition is also required. The diameters of each pipe in SRFDs are selected as the design variables. Simulated annealing algorithm is used to solve the optimization problem. The effectiveness of the optimal design results is demonstrated by fluid dynamics simulations. The results show that using the optimal channel diameters of SRFDs, the pressure drop in SRFD section is lower than that of the microreactor section. Meanwhile, in the case studies, only a few sensors that are located inside the SRFDs can easily detect the blockage abnormal condition in the parallelized microreactor system.