This study presents an improved data-driven Model-Free Adaptive Control(MFAC)strategy for attitude stabilization of a partially constrained combined spacecraft with external disturbances and input saturation. First, a...This study presents an improved data-driven Model-Free Adaptive Control(MFAC)strategy for attitude stabilization of a partially constrained combined spacecraft with external disturbances and input saturation. First, a novel dynamic linearization data model for the partially constrained combined spacecraft with external disturbances is established. The generalized disturbances composed of external disturbances and dynamic linearization errors are then reconstructed by a Discrete Extended State Observer(DESO). With the dynamic linearization data model and reconstructed information, a DESO-MFAC strategy for the combined spacecraft is proposed based only on input and output data. Next, the input saturation is overcome by introducing an antiwindup compensator. Finally, numerical simulations are carried out to demonstrate the effectiveness and feasibility of the proposed controller when the dynamic properties of the partially constrained combined spacecraft are completely unknown.展开更多
In this paper, by using quaternion models, the problem of attitude control is investigated for a class of flexible satellites. Two control laws are presented for the considered flexible satellite models to guarantee c...In this paper, by using quaternion models, the problem of attitude control is investigated for a class of flexible satellites. Two control laws are presented for the considered flexible satellite models to guarantee convergence of the closed-loop systems without using angular velocity measurement. One is in the form of a partial state feedback for the case where the modal variable is available, and the other is in the form of an observer-based partial state feedback for the case where the modal variable cannot be measured. Finally, an example is employed to illustrate the effectiveness of the proposed control laws.展开更多
基金supported by National Natural Science Foundation of China(Nos.61603114,61673135)the Fundamental Research Funds for the Central Universities of China(No.HIT.NSRIF.201826)
文摘This study presents an improved data-driven Model-Free Adaptive Control(MFAC)strategy for attitude stabilization of a partially constrained combined spacecraft with external disturbances and input saturation. First, a novel dynamic linearization data model for the partially constrained combined spacecraft with external disturbances is established. The generalized disturbances composed of external disturbances and dynamic linearization errors are then reconstructed by a Discrete Extended State Observer(DESO). With the dynamic linearization data model and reconstructed information, a DESO-MFAC strategy for the combined spacecraft is proposed based only on input and output data. Next, the input saturation is overcome by introducing an antiwindup compensator. Finally, numerical simulations are carried out to demonstrate the effectiveness and feasibility of the proposed controller when the dynamic properties of the partially constrained combined spacecraft are completely unknown.
基金co-supported by the Major Program of National Natural Science Foundation of China (Nos.61690210,61690212)Shenzhen Municipal Basic Research Project for Discipline Layout (No.JCYJ20170413112722597)Shenzhen Municipal Project for Basic Research (Nos.JCYJ20170307150952660,JCYJ20170307150227897)
文摘In this paper, by using quaternion models, the problem of attitude control is investigated for a class of flexible satellites. Two control laws are presented for the considered flexible satellite models to guarantee convergence of the closed-loop systems without using angular velocity measurement. One is in the form of a partial state feedback for the case where the modal variable is available, and the other is in the form of an observer-based partial state feedback for the case where the modal variable cannot be measured. Finally, an example is employed to illustrate the effectiveness of the proposed control laws.