期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Rapid Adaptation Approach for Dynamic Air‑Writing Recognition Using Wearable Wristbands with Self‑Supervised Contrastive Learning
1
作者 Yunjian Guo Kunpeng Li +4 位作者 Wei Yue Nam‑Young Kim Yang Li Guozhen Shen Jong‑Chul Lee 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期417-431,共15页
Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the pro... Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the proposed wearable wristband with selfsupervised contrastive learning excels at dynamic motion tracking and adapts rapidly across multiple scenarios.It features a four-channel sensing array composed of an ionic hydrogel with hierarchical microcone structures and ultrathin flexible electrodes,resulting in high-sensitivity capacitance output.Through wireless transmission from a Wi-Fi module,the proposed algorithm learns latent features from the unlabeled signals of random wrist movements.Remarkably,only few-shot labeled data are sufficient for fine-tuning the model,enabling rapid adaptation to various tasks.The system achieves a high accuracy of 94.9%in different scenarios,including the prediction of eight-direction commands,and air-writing of all numbers and letters.The proposed method facilitates smooth transitions between multiple tasks without the need for modifying the structure or undergoing extensive task-specific training.Its utility has been further extended to enhance human–machine interaction over digital platforms,such as game controls,calculators,and three-language login systems,offering users a natural and intuitive way of communication. 展开更多
关键词 Wearable wristband Self-supervised contrastive learning Dynamic gesture Air-writing Human-machine interaction
在线阅读 下载PDF
N:ZnO/MoS_(2)-heterostructured flexible synaptic devices enabling optoelectronic co-modulation for robust artificial visual systems 被引量:1
2
作者 Lei Xu Wenxiao Wang +6 位作者 Yang Li Yonghui Lin Wenjing Yue Kai Qian Qinglei Guo Jeonghyun Kim Guozhen Shen 《Nano Research》 SCIE EI CSCD 2024年第3期1902-1912,共11页
With the merits of non-contact,highly efficient,and parallel computing,optoelectronic synaptic devices combining sensing and memory in a single unit are promising for constructing neuromorphic computing and artificial... With the merits of non-contact,highly efficient,and parallel computing,optoelectronic synaptic devices combining sensing and memory in a single unit are promising for constructing neuromorphic computing and artificial visual chip.Based on this,a N:ZnO/MoS_(2)-heterostructured flexible optoelectronic synaptic device is developed in this work,and its capability in mimicking the synaptic behaviors is systemically investigated under the electrical and light signals.Versatile synaptic functions,including synaptic plasticity,long-term/short-term memory,and learning-forgetting-relearning property,have been achieved in this synaptic device.Further,an artificial visual memory system integrating sense and memory is emulated with the device array,and the visual memory behavior can be regulated by varying the light parameters.Moreover,the optoelectronic co-modulation behavior is verified by applying mixed electric and light signals to the array.In detail,a transient recovery property is discovered when the electric signals are applied in synergy during the decay of the light response,of which property facilitates the development of robust artificial visual systems.Furthermore,by superimposing electrical signals during the light response process,a differentiated response of the array is achieved,which can be used as a proof of concept for the color perception of the artificial visual system. 展开更多
关键词 flexible synaptic device synaptic plasticity optoelectronic synapse robust visual memory optoelectronic co-modulation artificial visual system
原文传递
Wireless,multimodal sensors for continuous measurement of pressure,temperature,and hydration of patients in wheelchair 被引量:2
3
作者 Seokjoo Cho Hyeonseok Han +37 位作者 Hyunwoo Park Sung-Uk Lee Jae-Hwan Kim Sung Woo Jeon Mengqiu Wang Raudel Avila Zhaoqian Xi Kabseok Ko Minsu Park Jungyup Lee Myungwoo Choi Je-Sang Lee Weon Gi Min Byeong-Ju Lee Soyeong Lee Jungrak Choi Jimin Gu Jaeho Park Min Seong Kim Junseong Ahn Osman Gul Chankyu Han Gihun Lee Seunghwan Kim Kyuyoung Kim Jeonghyun Kim Chang-Mo Kang Jahyun Koo Sung Soo Kwak Sungbong Kim Dong Yun Choi Seokwoo Jeon Hyung Jin Sung Yong Bae Park Minkyu Je Young Tae Cho Yong Suk Oh Inkyu Park 《npj Flexible Electronics》 SCIE 2023年第1期479-493,共15页
Individuals who are unable to walk independently spend most of the day in a wheelchair.This population is at high risk for developing pressure injuries caused by sitting.However,early diagnosis and prevention of these... Individuals who are unable to walk independently spend most of the day in a wheelchair.This population is at high risk for developing pressure injuries caused by sitting.However,early diagnosis and prevention of these injuries still remain challenging.Herein,we introduce battery-free,wireless,multimodal sensors and a movable system for continuous measurement of pressure,temperature,and hydration at skin interfaces.The device design includes a crack-activated pressure sensor with nanoscale encapsulations for enhanced sensitivity,a temperature sensor for measuring skin temperature,and a galvanic skin response sensor for measuring skin hydration levels.The movable system enables power harvesting,and data communication to multiple wireless devices mounted at skin-cushion interfaces of wheelchair users over full body coverage.Experimental evaluations and numerical simulations of the devices,together with clinical trials for wheelchair patients,demonstrate the feasibility and stability of the sensor system for preventing pressure injuries caused by sitting. 展开更多
关键词 INJURIES MODAL mounted
原文传递
Advancements in Passive Wireless Sensing Systems in Monitoring Harsh Environment and Healthcare Applications
4
作者 Wei Yue Yunjian Guo +9 位作者 Jong‐Chul Lee Enkhzaya Ganbold Jia-Kang Wu Yang Li Cong Wang Hyun Soo Kim Young-Kee Shin Jun-Ge Liang Eun-Seong Kim Nam-Young Kim 《Nano-Micro Letters》 2025年第5期145-192,共48页
Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing,particularly in challenging environments for monitoring industry and healthcare applications.These... Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing,particularly in challenging environments for monitoring industry and healthcare applications.These systems are equipped with battery-free operation,wireless connectivity,and are designed to be both miniaturized and lightweight.Such features enable the safe,real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices.Despite the exploration into diverse application environments,the development of a systematic and comprehensive research framework for system architecture remains elusive,which hampers further optimization of these systems.This review,therefore,begins with an examination of application scenarios,progresses to evaluate current system architectures,and discusses the function of each component—specifically,the passive sensor module,the wireless communication model,and the readout module—within the context of key implementations in target sensing systems.Furthermore,we present case studies that demonstrate the feasibility of proposed classified components for sensing scenarios,derived from this systematic approach.By outlining a research trajectory for the application of passive wireless systems in sensing technologies,this paper aims to establish a foundation for more advanced,user-friendly applications. 展开更多
关键词 Wireless sensing Passive detection Harsh environment Biomedical monitoring Flexible sensors
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部