Small modular reactors have received widespread attention owing to their inherent safety,low investment,and flexibility.Small pressurized water reactors(SPWRs)have become important candidates for SMRs owing to their h...Small modular reactors have received widespread attention owing to their inherent safety,low investment,and flexibility.Small pressurized water reactors(SPWRs)have become important candidates for SMRs owing to their high technological maturity.Since the Fukushima accident,research on accident-tolerant fuels(ATFs),which are more resistant to serious accidents than conventional fuels,has gradually increased.This study analyzes the neutronics and thermal hydraulics of an SPWR(ACPR50S)for different ATFs,BeO+UO_(2)−SiC,BeO+UO_(2)−FeCrAl,U_(3)Si_(2)−SiC,and U_(3)Si_(2)−FeCrAl,based on a PWR fuel management code,the Bamboo-C deterministic code.In the steady state,the burnup calculations,reactivity coefficients,power and temperature distributions,and control rod reactivity worth were studied.The transients of the control rod ejection accident for the two control rods with the maximum and minimum reactivity worth were analyzed.The results showed that 5%B-10 enrichment in the wet annular burnable absorbers assembly can effectively reduce the initial reactivity and end-of-life reactivity penalty.The BeO+UO2−SiC core exhibited superior neutronic characteristics in terms of burnup and negative temperature reactivity compared with the other three cases owing to the strong moderation ability of BeO+UO_(2)and low neutron absorption of SiC.However,the U_(3)Si_(2)core had a marginally better power-flattening effect than BeO+UO_(2),and the differential worth of each control rod group was similar between different ATFs.During the transient of a control rod ejection,the changes in the fuel temperature,coolant temperature,and coolant density were similar.The maximum difference was less than 10℃ for the fuel temperature and 2℃ for the coolant temperature.展开更多
Employing two fully relativistic methods,the multi-reference configuration Dirac-Hartree-Fock(MCDHF)methodand the relativistic many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the ...Employing two fully relativistic methods,the multi-reference configuration Dirac-Hartree-Fock(MCDHF)methodand the relativistic many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest35 energy levels of the(1s^(2))nl configurations(where the principal quantum number n=2-6 and the angular quantum numberl=0,...,n-1)of lithium-like germanium(Ge XXX),as well as complete data on the transition wavelengths,radiativerates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magneticdipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.The results from the two methodsare consistent with each other and align well with previous accurate experimental and theoretical findings.We assess theoverall accuracies of present RMBPT results to be likely the most precise ones to date.The present fully relativistic resultsshould be helpful for soft x-ray laser research,spectral line identification,plasma modeling and diagnosing.The datasetspresented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00135.展开更多
Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance.In this study,a large field-of-view time-encoded imager was developed for gamma-ray and ne...Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance.In this study,a large field-of-view time-encoded imager was developed for gamma-ray and neutron source hotspot imaging based on a depth-of-interaction(DOI)detector.The imager primarily consists of a DOI detector system and a rotary dual-layer cylindrical coded mask.An EJ276 plastic scintillator coupled with two SiPMs was designed as the DOI detector to increase the field of view and improve the imager performance.The difference in signal time at both ends and the log of the signal amplitude ratio were used to calculate the interaction position resolution.The position resolution of the DOI detector was calibrated using a collimated Cs-137 source,and the full width at half maximum of the reconstruction position of the Gaussian fitting curve was approximately 4.4 cm.The DOI detector can be arbitrarily divided into several units to independently reconstruct the source distribution images.The unit length was optimized via Am-Be source-location experiments.A multidetector filtering method is proposed for image denoising.This method can effectively reduce image noise caused by poor DOI detector position resolution.The vertical field of view of the imager was(-55°,55°)when the detector was placed in the center of the coded mask.A DT neutron source at 20 m standoff could be located within 2400 s with an angular resolution of 3.5°.展开更多
With the advantages of high reliability, power density, and long life, nuclear power reactors have become a promising option for space power. In this study, the Reactor Excursion and Leak Analysis Program 5(RELAP5), w...With the advantages of high reliability, power density, and long life, nuclear power reactors have become a promising option for space power. In this study, the Reactor Excursion and Leak Analysis Program 5(RELAP5), with the implementation of sodium–potassium eutectic alloy(NaK-78) properties and heat transfer correlations, is adopted to analyze the thermal–hydraulic characteristics of the space nuclear reactor TOPAZ-Ⅱ.A RELAP5 model including thermionic fuel elements(TFEs), reactor core, radiator, coolant loop, and volume accumulator is established. The temperature reactivity feedback effects of the fuel, TFE emitter, TFE collector,moderator, and reactivity insertion effects of the control drums and safety drums are considered. To benchmark the integrated TOPAZ-Ⅱ system model, an electrical ground test of the fully integrated TOPAZ-Ⅱ system, the V-71 unit,is simulated and analyzed. The calculated coolant temperature and system pressure are in acceptable agreement with the experimental data for the maximum relative errors of 8 and 10%, respectively. The detailed thermal–hydraulic characteristics of TOPAZ-Ⅱ are then simulated and analyzed at the steady state. The calculation results agree well with the design values. The current work provides a solid foundation for space reactor design and transient analysis in the future.展开更多
A method based on the cross-sectional relationship between^(10)B(n,α)^(7)Li and^(1)H(n,γ)^(2)H was proposed to detect and reconstruct the three-dimensional boron concentration/dose distribution in vivo during boron ...A method based on the cross-sectional relationship between^(10)B(n,α)^(7)Li and^(1)H(n,γ)^(2)H was proposed to detect and reconstruct the three-dimensional boron concentration/dose distribution in vivo during boron neutron capture therapy(BNCT).Factors such as the neutron energy,fluence rate,and degree of non-uniform distribution of the boron concentration in a voxel may affect the results of this method.A theoretical analysis of the accuracy of the method using a Monte Carlo simulation shows that the determining error is generally less than 1%under different tumor locations and neutron source configurations.When the voxel size is larger than 0.4 cm,the determining error might be higher for a non-uniformly distributed boron concentration in the voxel because of the changes in the neutron energy and fluence rate.In conclusion,the proposed method enables an accurate threedimensional boron determination in vivo during BNCT.展开更多
We theoretically and experimentally study the optimal duty cycle and pumping rate for square-wave amplitudemodulated Bell–Bloom magnetometers.The theoretical and the experimental results are in good agreement for dut...We theoretically and experimentally study the optimal duty cycle and pumping rate for square-wave amplitudemodulated Bell–Bloom magnetometers.The theoretical and the experimental results are in good agreement for duty cycles and corresponding pumping rates ranging over 2 orders of magnitude.Our study gives the maximum field response as a function of duty cycle and pumping rate.Especially,for a fixed duty cycle,the maximum field response is obtained when the time averaged pumping rate,which is the product of pumping rate and duty cycle,is equal to the transverse relaxation rate in the dark.By using a combination of small duty cycle and large pumping rate,one can increase the maximum field response by up to a factor of 2 or π /2,relative to that of the sinusoidal modulation or the 50% duty cycle square-wave modulation respectively.We further show that the same pumping condition is also practically optimal for the sensitivity due to the fact that the signal at resonance is insensitive to the fluctuations of pumping rate and duty cycle.展开更多
The total absolute cross sections of single-and double-electron capture (SEC and DEC) in the collisions of He^(2+)with He and Ne^(8+)with O_(2),N_(2),and CH_(4) were studied in the energy ranges 3.5–50 keV/u and 2.8...The total absolute cross sections of single-and double-electron capture (SEC and DEC) in the collisions of He^(2+)with He and Ne^(8+)with O_(2),N_(2),and CH_(4) were studied in the energy ranges 3.5–50 keV/u and 2.8–40 keV/u,respectively.Through a deep analysis of the experimental systematic uncertainties in the measurement procedure and data evaluation,the error in the experimental results of the SEC cross sections is less than 9%.Within the uncertainties,the present results of the He^(2+)–He collision show good consistency with previous measurements,validating the experimental system and paving the way for precise measurements of EC cross sections for a variety of ions and neutral gases.The present measurements allow for a test of EC theory and provide crucial EC cross section data for the establishment of plasma models in fusion research and astrophysical X-ray studies.展开更多
A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method wit...A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method with scattering angle correction(CSS-BP-SC) can quickly perform the back-projection process of the Compton cone and can be used to precompute the list-mode maximum likelihood expectation maximization(LM-MLEM). A dedicated parallel architecture was designed for the graphics processing unit acceleration of the back-projection and iteration stage of the CSS-BP-SC-based LM-MLEM. The imaging results of the two-point source Monte Carlo(MC) simulation demonstrate that by analyzing the full width at half maximum along the three coordinate axes, the CSS-BP-SC-based LM-MLEM can obtain imaging results comparable to those of the traditional reconstruction algorithm, that is, the simple back-projection-based LM-MLEM. The imaging results of the mouse phantom MC simulation and experiment demonstrate that the reconstruction results obtained by the proposed method sufficiently coincide with the set radioactivity distribution, and the speed increased by more than 664 times compared to the traditional reconstruction algorithm in the mouse phantom experiment. The proposed method will further advance the imaging applications of Compton cameras.展开更多
Atomic radiative data such as excitation energies, transition wavelengths, radiative rates, and level lifetimes with high precision are the essential parameters for the abundance analysis, simulation, and diagnostics ...Atomic radiative data such as excitation energies, transition wavelengths, radiative rates, and level lifetimes with high precision are the essential parameters for the abundance analysis, simulation, and diagnostics in fusion and astrophysical plasmas. In this work, we mainly focus on reviewing our two projects performed in the past decade. One is about the ions with Z■30 that are generally of astrophysical interest, and the other one is about the highly charged krypton(Z = 36)and tungsten(Z = 74) ions that are relevant in research of magnetic confinement fusion. Two different and independent methods, namely, multiconfiguration Dirac–Hartree–Fock(MCDHF) and the relativistic many-body perturbation theory(RMBPT) are usually used in our studies. As a complement/extension to our previous works for highly charged tungsten ions with open M-shell and open N-shell, we also mainly focus on presenting and discussing our complete RMBPT and MCDHF calculations for the excitation energies, wavelengths, electric dipole(E1), magnetic dipole(M1), electric quadrupole(E2), and magnetic quadrupole(M2) transition properties, and level lifetimes for the lowest 148 levels belonging to the 3l3configurations in Al-like W61+. We also summarize the uncertainties of our systematical theoretical calculations, by cross-checking/validating our datasets from our RMBPT and MCDHF calculations, and by detailed comparisons with available accurate observations and other theoretical calculations. The data are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.10569.展开更多
Employing the advanced relativistic configuration interaction(RCI)combined with the many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest 35 energy levels from the(1s^(2))nl ...Employing the advanced relativistic configuration interaction(RCI)combined with the many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest 35 energy levels from the(1s^(2))nl configurations(where the principal quantum number n=2–6 and the angular quantum number l=0,...,n-1)of lithium-like iron Fe XXIV,as well as complete data on the transition wavelengths,radiative rates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magnetic dipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.Through detailed comparisons with previous results,we assess the overall accuracies of present RMBPT results to be likely the most precise ones to date.Configuration interaction effects are found to be very important for the energies and radiative properties for the ion.The present RMBPT results are valuable for spectral line identification,plasma modeling,and diagnosing.展开更多
The electron injection and acceleration driven by a few-cycle laser with a sharp vacuum-plasma boundary have been investigated through three-dimensional(3D)particle-in-cell simulations.It is found that an isotropic bo...The electron injection and acceleration driven by a few-cycle laser with a sharp vacuum-plasma boundary have been investigated through three-dimensional(3D)particle-in-cell simulations.It is found that an isotropic boundary impact injection(BII)first occurs at the vacuum-plasma boundary,and then carrier-envelope-phase(CEP)shift causes the transverse oscillation of the plasma bubble,resulting in a periodic electron self-injection(SI)in the laser polarization direction.It shows that the electron charge of the BII only accounts for a small part of the total charge,and the CEP can effectively tune the quality of the injected electron beam.The dependences of laser intensity and electron density on the total charge and the ratio of BII charge to the total charge are studied.The results are beneficial to electron acceleration and its applications,such as betatron radiation source.展开更多
The single-particle potentials in isospin asymmetric nuclear matter is investigated in the framework of the Brueck-ner theory by adopting the realistic Bonn B two-body interaction in combination with a consistent micr...The single-particle potentials in isospin asymmetric nuclear matter is investigated in the framework of the Brueck-ner theory by adopting the realistic Bonn B two-body interaction in combination with a consistent microscopic three-body force.The rearrangement contribution induced by the ground state correlations to single-nucleon potentials is calculated in terms of the hole-line expansion of the mass operator.With the modification of this rearrangement term the symmetry potential is discussed as a function of momentum for several isospin asymme.展开更多
This paper studies the projectile electron loss cross sections of C^3+ colliding with atomic hydrogen in the frame work of extended over-barrier model at intermediate velocities (25 keV/u-600 keV/u). The electron l...This paper studies the projectile electron loss cross sections of C^3+ colliding with atomic hydrogen in the frame work of extended over-barrier model at intermediate velocities (25 keV/u-600 keV/u). The electron loss is calculated in terms of the interaction between the screened target nucleus and the active projectile electron and of the interaction between projectile electron and target electron. Compared with the convergent close-coupling calculations, screening and anti-screening calculations, this model satisfactorily reproduces the experimentally obtained energy dependence of the electron-impact ionisation cross sections and the single electron loss cross sections over the energy range investigated here.展开更多
With the complementarity of the nucleonic three-body force,we present the saturation points of symmetric nuclear matter with different interactions adopted within the Brueckner-Hartree-Fock scheme,and a more accurate ...With the complementarity of the nucleonic three-body force,we present the saturation points of symmetric nuclear matter with different interactions adopted within the Brueckner-Hartree-Fock scheme,and a more accurate empirical parameterization function for the equation of state of symmetric nuclear matter and pure neutron matter.On the basis of this fit formula,the symmetry energy and its derivatives are investigated,and ultimately the higher-order coefficient of the isobaric incompressibility for isospin asymmetric nuclear matter is predicted.展开更多
With the rapid development of space technology,high-efficiency power systems occupy an increasingly important position in deep space exploration missions. Radioisotope thermophotovoltaic(RPTV)systems convert the heat ...With the rapid development of space technology,high-efficiency power systems occupy an increasingly important position in deep space exploration missions. Radioisotope thermophotovoltaic(RPTV)systems convert the heat of radioisotope into electrical energy via thermally infrared radiation photons,which have attracted attention in farreaching space exploration. In this paper,a heat source surface temperature and heat transfer simulation model in COMSOL Multiphysics was established based on238 PuO2. Besides,at different heat source power densities,the temperature gradient of the heat source surface was obtained,and a heat source temperature of 600 K– 1 000 K was obtained from a heat source power of 0.42 W–1.6 W. Moreover,an RTPV prototype was created and the transducing unit was studied,mainly comparing the two transducing units of GaSb cell and InGaAs cell. The performance of InGaAs cell is better under the same heat source temperature. Predicting the prepared RTPV generators are expected to become reliable space power sources in the future.展开更多
Microstructure of ZnO:Mn films with various Mn concentration was investigated with XANES and XPS. The experimental results revealed a substitution of Mn in ZnO and also excluded the existence of Mn oxides or metallic ...Microstructure of ZnO:Mn films with various Mn concentration was investigated with XANES and XPS. The experimental results revealed a substitution of Mn in ZnO and also excluded the existence of Mn oxides or metallic manganese clusters. The substitutional Mn presented a divalent state and all the ZnO:Mn films were n-type. Room temperature ferromagnetism monotonously decreases with the decrease of the electron carrier concentration. The observed ferrmagnetism should come from the carrier-mediated exchange.展开更多
The neutron radiation field has vital applications in areas such as biomedicine,geology,radiation safety,and many others for neutron detection and neutron metrology.Correcting neutron fluence rate perturbation accurat...The neutron radiation field has vital applications in areas such as biomedicine,geology,radiation safety,and many others for neutron detection and neutron metrology.Correcting neutron fluence rate perturbation accurately is an important yet challenging problem.This study proposes a correction method that analyzes three physical processes.This method,which transforms the detection process from point detection to area detection,is based on a novel physical model and has been validated through theoretical analyses,experiments,and simulations.According to the average differences between the calculated and experimental results,the new method(1.67%)demonstrated better accuracy than the traditional simulation(2.17%).In a closed thermal neutron radiation field,the detector or strong neutron absorption material significantly perturbs the neutron fluence rate,whereas its impact on the energy spectrum shape and neutron directionality is relatively minor.Furthermore,based on the calculation results of the perturbation rate formula for medium materials with different compositions and sizes,the larger the volume and capture cross section of the medium,the higher the perturbation rate generated in the closed radiation field.展开更多
Generation of self-generated annular magnetic fields at the rear side of a solid target driven by relativistic laser pulse is investigated by using theoretical analysis and particle-in-cell simulations.The spatial str...Generation of self-generated annular magnetic fields at the rear side of a solid target driven by relativistic laser pulse is investigated by using theoretical analysis and particle-in-cell simulations.The spatial strength distribution of magnetic fields can be accurately predicted by calculating the net flow caused by the superposition of source flow and return flow of hot electrons.The theoretical model established shows good agreement with the simulation results,indicating that the magnetic-field strength scales positively to the temperature of hot electrons.This provides us a way to improve the magnetic-field generation by using a micro-structured plasma grating in front of the solid target.Compared with that for a common flat target,hot electrons can be effectively heated with the well-designed grating size,leading to a stronger magnetic field.The spatial distribution of magnetic fields can be modulated by optimizing the grating period and height as well as the incident angle of the laser pulse.展开更多
Thanks to its noteworthy mechanical properties, excellent damage tolerance and good thermal stability, the Ti3SiC2 ternary compound has attracted great concern and has been considered as a potential structural compone...Thanks to its noteworthy mechanical properties, excellent damage tolerance and good thermal stability, the Ti3SiC2 ternary compound has attracted great concern and has been considered as a potential structural component material for the 4th generation of reactors (e.g., gas fast nuclear reactors) and future fusion reactors. The outstanding properties are due to the nanolameIlar structure which imparts characteristics of both metals and ceramics to this material In our work, Ti3SiC2 samples have been irradiated by C^+ ions with a high fluence of 1.78 × 10^17 ions/cm^2 at a range of temperatures from 120℃~850℃. Subsequently, series of characterization techniques including synchrotron irradiation x-ray diffraction, scanning electron microscopy and nano-indentation are carried out to understand the changes of microstructure and mechanical properties. The composition exhibits high damage tolerant properties and a high recovery rate through the analysis, especially at high temperature. The minimum damage to an irradiated sample appears around 350℃ in the temperature range 120℃-550℃. At a high irradiation temperature, a significant reduction in the damage can be achieved and an almost complete lack of damage compared with an un-irradiated sample is revealed at the temperature of 850℃.展开更多
The limited availability of studies on the natural convection heat transfer characteristics of fluoride salt has hindered progress in the design of passive residual heat removal systems(PRHRS)for molten salt reactors....The limited availability of studies on the natural convection heat transfer characteristics of fluoride salt has hindered progress in the design of passive residual heat removal systems(PRHRS)for molten salt reactors.This paper presents results from a numerical investigation of natural convection heat transfer characteristics of fluoride salt and heat pipes in the drain tank of a PRHRS.Simulation results are compared with experimental data,demonstrating the accuracy of the calculation methodology.Temperature distribution of fluoride salt and heat transfer characteristics are obtained and analyzed.The radial temperature of liquid fluoride salt in the drain tank shows a uniform distribution,while temperatures increase with increase in axial height from the bottom to the top of the drain tank.In addition,natural convection intensity increases with increase in height of the heat pipes in the tank.Spacing between heat pipes has no obvious effect on the natural convection heat transfer coefficient.This study will contribute to the design of passive heat removal systems for advanced nuclear reactors.展开更多
基金supported by the National Natural Science Foundation of China (No. 12205150)Natural Science Foundation of Jiangsu Province (No. BK20210304)+1 种基金China Postdoctoral Science Foundation (Nos. 2020M681594 and 2019TQ0148)Jiangsu Province Postdoctoral Science Foundation (Nos. 2020Z231)
文摘Small modular reactors have received widespread attention owing to their inherent safety,low investment,and flexibility.Small pressurized water reactors(SPWRs)have become important candidates for SMRs owing to their high technological maturity.Since the Fukushima accident,research on accident-tolerant fuels(ATFs),which are more resistant to serious accidents than conventional fuels,has gradually increased.This study analyzes the neutronics and thermal hydraulics of an SPWR(ACPR50S)for different ATFs,BeO+UO_(2)−SiC,BeO+UO_(2)−FeCrAl,U_(3)Si_(2)−SiC,and U_(3)Si_(2)−FeCrAl,based on a PWR fuel management code,the Bamboo-C deterministic code.In the steady state,the burnup calculations,reactivity coefficients,power and temperature distributions,and control rod reactivity worth were studied.The transients of the control rod ejection accident for the two control rods with the maximum and minimum reactivity worth were analyzed.The results showed that 5%B-10 enrichment in the wet annular burnable absorbers assembly can effectively reduce the initial reactivity and end-of-life reactivity penalty.The BeO+UO2−SiC core exhibited superior neutronic characteristics in terms of burnup and negative temperature reactivity compared with the other three cases owing to the strong moderation ability of BeO+UO_(2)and low neutron absorption of SiC.However,the U_(3)Si_(2)core had a marginally better power-flattening effect than BeO+UO_(2),and the differential worth of each control rod group was similar between different ATFs.During the transient of a control rod ejection,the changes in the fuel temperature,coolant temperature,and coolant density were similar.The maximum difference was less than 10℃ for the fuel temperature and 2℃ for the coolant temperature.
基金supported by the Research Foundation for Higher Level Talents of West Anhui University(Grant No.WGKQ2021005).
文摘Employing two fully relativistic methods,the multi-reference configuration Dirac-Hartree-Fock(MCDHF)methodand the relativistic many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest35 energy levels of the(1s^(2))nl configurations(where the principal quantum number n=2-6 and the angular quantum numberl=0,...,n-1)of lithium-like germanium(Ge XXX),as well as complete data on the transition wavelengths,radiativerates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magneticdipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.The results from the two methodsare consistent with each other and align well with previous accurate experimental and theoretical findings.We assess theoverall accuracies of present RMBPT results to be likely the most precise ones to date.The present fully relativistic resultsshould be helpful for soft x-ray laser research,spectral line identification,plasma modeling and diagnosing.The datasetspresented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00135.
基金supported by the National Natural Science Foundation of China(Nos.11975121,12205131)the Fundamental Research Funds for the Central Universities(No.lzujbky-2021-sp58)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_0354)。
文摘Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance.In this study,a large field-of-view time-encoded imager was developed for gamma-ray and neutron source hotspot imaging based on a depth-of-interaction(DOI)detector.The imager primarily consists of a DOI detector system and a rotary dual-layer cylindrical coded mask.An EJ276 plastic scintillator coupled with two SiPMs was designed as the DOI detector to increase the field of view and improve the imager performance.The difference in signal time at both ends and the log of the signal amplitude ratio were used to calculate the interaction position resolution.The position resolution of the DOI detector was calibrated using a collimated Cs-137 source,and the full width at half maximum of the reconstruction position of the Gaussian fitting curve was approximately 4.4 cm.The DOI detector can be arbitrarily divided into several units to independently reconstruct the source distribution images.The unit length was optimized via Am-Be source-location experiments.A multidetector filtering method is proposed for image denoising.This method can effectively reduce image noise caused by poor DOI detector position resolution.The vertical field of view of the imager was(-55°,55°)when the detector was placed in the center of the coded mask.A DT neutron source at 20 m standoff could be located within 2400 s with an angular resolution of 3.5°.
基金supported by the China National Postdoctoral Program for Innovative Talents(No.BX201600124)China Postdoctoral Science Foundation(No.2016M600796)the National Natural Science Foundation of China(No.11605131)
文摘With the advantages of high reliability, power density, and long life, nuclear power reactors have become a promising option for space power. In this study, the Reactor Excursion and Leak Analysis Program 5(RELAP5), with the implementation of sodium–potassium eutectic alloy(NaK-78) properties and heat transfer correlations, is adopted to analyze the thermal–hydraulic characteristics of the space nuclear reactor TOPAZ-Ⅱ.A RELAP5 model including thermionic fuel elements(TFEs), reactor core, radiator, coolant loop, and volume accumulator is established. The temperature reactivity feedback effects of the fuel, TFE emitter, TFE collector,moderator, and reactivity insertion effects of the control drums and safety drums are considered. To benchmark the integrated TOPAZ-Ⅱ system model, an electrical ground test of the fully integrated TOPAZ-Ⅱ system, the V-71 unit,is simulated and analyzed. The calculated coolant temperature and system pressure are in acceptable agreement with the experimental data for the maximum relative errors of 8 and 10%, respectively. The detailed thermal–hydraulic characteristics of TOPAZ-Ⅱ are then simulated and analyzed at the steady state. The calculation results agree well with the design values. The current work provides a solid foundation for space reactor design and transient analysis in the future.
基金This work was supported by the National Natural Science Foundation of China(Nos.11805100 and 11905106)the Fundamental Research Funds for the Central Universities(No.NG2020003).
文摘A method based on the cross-sectional relationship between^(10)B(n,α)^(7)Li and^(1)H(n,γ)^(2)H was proposed to detect and reconstruct the three-dimensional boron concentration/dose distribution in vivo during boron neutron capture therapy(BNCT).Factors such as the neutron energy,fluence rate,and degree of non-uniform distribution of the boron concentration in a voxel may affect the results of this method.A theoretical analysis of the accuracy of the method using a Monte Carlo simulation shows that the determining error is generally less than 1%under different tumor locations and neutron source configurations.When the voxel size is larger than 0.4 cm,the determining error might be higher for a non-uniformly distributed boron concentration in the voxel because of the changes in the neutron energy and fluence rate.In conclusion,the proposed method enables an accurate threedimensional boron determination in vivo during BNCT.
基金Project supported by the National Natural Science Foundation of China(Grant No.11074050)
文摘We theoretically and experimentally study the optimal duty cycle and pumping rate for square-wave amplitudemodulated Bell–Bloom magnetometers.The theoretical and the experimental results are in good agreement for duty cycles and corresponding pumping rates ranging over 2 orders of magnitude.Our study gives the maximum field response as a function of duty cycle and pumping rate.Especially,for a fixed duty cycle,the maximum field response is obtained when the time averaged pumping rate,which is the product of pumping rate and duty cycle,is equal to the transverse relaxation rate in the dark.By using a combination of small duty cycle and large pumping rate,one can increase the maximum field response by up to a factor of 2 or π /2,relative to that of the sinusoidal modulation or the 50% duty cycle square-wave modulation respectively.We further show that the same pumping condition is also practically optimal for the sensitivity due to the fact that the signal at resonance is insensitive to the fluctuations of pumping rate and duty cycle.
基金supported by the National Key R&D Program of China (No. 2022YFA1602504)the National Natural Science Foundation of China (Nos. 12204110 and U1832201)Shanghai Leading Academic Discipline Project (Project No. B107)。
文摘The total absolute cross sections of single-and double-electron capture (SEC and DEC) in the collisions of He^(2+)with He and Ne^(8+)with O_(2),N_(2),and CH_(4) were studied in the energy ranges 3.5–50 keV/u and 2.8–40 keV/u,respectively.Through a deep analysis of the experimental systematic uncertainties in the measurement procedure and data evaluation,the error in the experimental results of the SEC cross sections is less than 9%.Within the uncertainties,the present results of the He^(2+)–He collision show good consistency with previous measurements,validating the experimental system and paving the way for precise measurements of EC cross sections for a variety of ions and neutral gases.The present measurements allow for a test of EC theory and provide crucial EC cross section data for the establishment of plasma models in fusion research and astrophysical X-ray studies.
基金supported by the National Natural Science Foundation of China (No. 12220101005)Natural Science Foundation of Jiangsu Province (No. BK20220132)+2 种基金Primary Research and Development Plan of Jiangsu Province (No. BE2019002-3)Fundamental Research Funds for Central Universities (No. NG2022004)the Foundation of the Graduate Innovation Center in NUAA (No. xcxjh20210613)。
文摘A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method with scattering angle correction(CSS-BP-SC) can quickly perform the back-projection process of the Compton cone and can be used to precompute the list-mode maximum likelihood expectation maximization(LM-MLEM). A dedicated parallel architecture was designed for the graphics processing unit acceleration of the back-projection and iteration stage of the CSS-BP-SC-based LM-MLEM. The imaging results of the two-point source Monte Carlo(MC) simulation demonstrate that by analyzing the full width at half maximum along the three coordinate axes, the CSS-BP-SC-based LM-MLEM can obtain imaging results comparable to those of the traditional reconstruction algorithm, that is, the simple back-projection-based LM-MLEM. The imaging results of the mouse phantom MC simulation and experiment demonstrate that the reconstruction results obtained by the proposed method sufficiently coincide with the set radioactivity distribution, and the speed increased by more than 664 times compared to the traditional reconstruction algorithm in the mouse phantom experiment. The proposed method will further advance the imaging applications of Compton cameras.
基金the support from the National Natural Science Foundation of China (Grant Nos. 12074081 and 12104095)。
文摘Atomic radiative data such as excitation energies, transition wavelengths, radiative rates, and level lifetimes with high precision are the essential parameters for the abundance analysis, simulation, and diagnostics in fusion and astrophysical plasmas. In this work, we mainly focus on reviewing our two projects performed in the past decade. One is about the ions with Z■30 that are generally of astrophysical interest, and the other one is about the highly charged krypton(Z = 36)and tungsten(Z = 74) ions that are relevant in research of magnetic confinement fusion. Two different and independent methods, namely, multiconfiguration Dirac–Hartree–Fock(MCDHF) and the relativistic many-body perturbation theory(RMBPT) are usually used in our studies. As a complement/extension to our previous works for highly charged tungsten ions with open M-shell and open N-shell, we also mainly focus on presenting and discussing our complete RMBPT and MCDHF calculations for the excitation energies, wavelengths, electric dipole(E1), magnetic dipole(M1), electric quadrupole(E2), and magnetic quadrupole(M2) transition properties, and level lifetimes for the lowest 148 levels belonging to the 3l3configurations in Al-like W61+. We also summarize the uncertainties of our systematical theoretical calculations, by cross-checking/validating our datasets from our RMBPT and MCDHF calculations, and by detailed comparisons with available accurate observations and other theoretical calculations. The data are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.10569.
基金Project supported by the Research Foundation for Higher Level Talents of West Anhui University(Grant No.WGKQ2021005)。
文摘Employing the advanced relativistic configuration interaction(RCI)combined with the many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest 35 energy levels from the(1s^(2))nl configurations(where the principal quantum number n=2–6 and the angular quantum number l=0,...,n-1)of lithium-like iron Fe XXIV,as well as complete data on the transition wavelengths,radiative rates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magnetic dipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.Through detailed comparisons with previous results,we assess the overall accuracies of present RMBPT results to be likely the most precise ones to date.Configuration interaction effects are found to be very important for the energies and radiative properties for the ion.The present RMBPT results are valuable for spectral line identification,plasma modeling,and diagnosing.
基金the National Natural Science Foundation of China(Grant Nos.12005297,12175309,12175310,11975308,and 12275356)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25050200)+3 种基金the Research Project of NUDT(Grant No.ZK21-12)the Key Laboratory Foundation of Laser Plasma of Ministry of Educationthe financial support from the NUDT Young Innovator Awards(Grant No.20190102)Outstanding Young Talents。
文摘The electron injection and acceleration driven by a few-cycle laser with a sharp vacuum-plasma boundary have been investigated through three-dimensional(3D)particle-in-cell simulations.It is found that an isotropic boundary impact injection(BII)first occurs at the vacuum-plasma boundary,and then carrier-envelope-phase(CEP)shift causes the transverse oscillation of the plasma bubble,resulting in a periodic electron self-injection(SI)in the laser polarization direction.It shows that the electron charge of the BII only accounts for a small part of the total charge,and the CEP can effectively tune the quality of the injected electron beam.The dependences of laser intensity and electron density on the total charge and the ratio of BII charge to the total charge are studied.The results are beneficial to electron acceleration and its applications,such as betatron radiation source.
基金Sponsored by the National Natural Science Foundation of China under Grant Nos 11075037,11175219,10875151 and 10905041the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,the Fundamental Research Funds for the Central Universities of China,Shanghai Leading Academic Discipline Project(B107)the Knowledge Innovation Project of Chinese Academy of Sciences(KJCX2-EW-N01).
文摘The single-particle potentials in isospin asymmetric nuclear matter is investigated in the framework of the Brueck-ner theory by adopting the realistic Bonn B two-body interaction in combination with a consistent microscopic three-body force.The rearrangement contribution induced by the ground state correlations to single-nucleon potentials is calculated in terms of the hole-line expansion of the mass operator.With the modification of this rearrangement term the symmetry potential is discussed as a function of momentum for several isospin asymme.
基金supported by the National Natural Science Foundation of China (Grant Nos.10975113 and 10675096)
文摘This paper studies the projectile electron loss cross sections of C^3+ colliding with atomic hydrogen in the frame work of extended over-barrier model at intermediate velocities (25 keV/u-600 keV/u). The electron loss is calculated in terms of the interaction between the screened target nucleus and the active projectile electron and of the interaction between projectile electron and target electron. Compared with the convergent close-coupling calculations, screening and anti-screening calculations, this model satisfactorily reproduces the experimentally obtained energy dependence of the electron-impact ionisation cross sections and the single electron loss cross sections over the energy range investigated here.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11075037,11175219 and 10875151the Scientific Research Foundation for the Returned Overseas Scholars,Ministry of Education of China,the Fundamental Research Funds for the Central Universities of China,Shanghai Leading Academic Discipline Project(B107)the Knowledge Innovation Project of the Chinese Academy of Sciences(KJCX2-EW-N01).
文摘With the complementarity of the nucleonic three-body force,we present the saturation points of symmetric nuclear matter with different interactions adopted within the Brueckner-Hartree-Fock scheme,and a more accurate empirical parameterization function for the equation of state of symmetric nuclear matter and pure neutron matter.On the basis of this fit formula,the symmetry energy and its derivatives are investigated,and ultimately the higher-order coefficient of the isobaric incompressibility for isospin asymmetric nuclear matter is predicted.
文摘With the rapid development of space technology,high-efficiency power systems occupy an increasingly important position in deep space exploration missions. Radioisotope thermophotovoltaic(RPTV)systems convert the heat of radioisotope into electrical energy via thermally infrared radiation photons,which have attracted attention in farreaching space exploration. In this paper,a heat source surface temperature and heat transfer simulation model in COMSOL Multiphysics was established based on238 PuO2. Besides,at different heat source power densities,the temperature gradient of the heat source surface was obtained,and a heat source temperature of 600 K– 1 000 K was obtained from a heat source power of 0.42 W–1.6 W. Moreover,an RTPV prototype was created and the transducing unit was studied,mainly comparing the two transducing units of GaSb cell and InGaAs cell. The performance of InGaAs cell is better under the same heat source temperature. Predicting the prepared RTPV generators are expected to become reliable space power sources in the future.
文摘Microstructure of ZnO:Mn films with various Mn concentration was investigated with XANES and XPS. The experimental results revealed a substitution of Mn in ZnO and also excluded the existence of Mn oxides or metallic manganese clusters. The substitutional Mn presented a divalent state and all the ZnO:Mn films were n-type. Room temperature ferromagnetism monotonously decreases with the decrease of the electron carrier concentration. The observed ferrmagnetism should come from the carrier-mediated exchange.
基金supported by the Fundamental Research Funds of the National Institute of MetrologyChina(No.AKYZZ2113)+1 种基金National Key Research and Development Program of China(No.2017YFF0206205)the Team Building Program of Nanjing University(No.1480604114)。
文摘The neutron radiation field has vital applications in areas such as biomedicine,geology,radiation safety,and many others for neutron detection and neutron metrology.Correcting neutron fluence rate perturbation accurately is an important yet challenging problem.This study proposes a correction method that analyzes three physical processes.This method,which transforms the detection process from point detection to area detection,is based on a novel physical model and has been validated through theoretical analyses,experiments,and simulations.According to the average differences between the calculated and experimental results,the new method(1.67%)demonstrated better accuracy than the traditional simulation(2.17%).In a closed thermal neutron radiation field,the detector or strong neutron absorption material significantly perturbs the neutron fluence rate,whereas its impact on the energy spectrum shape and neutron directionality is relatively minor.Furthermore,based on the calculation results of the perturbation rate formula for medium materials with different compositions and sizes,the larger the volume and capture cross section of the medium,the higher the perturbation rate generated in the closed radiation field.
基金supported by the National Natural Science Foundation of China(Grant Nos.12175310,12305268,and U2241281)the Natural Science Foundation of Hunan Province(Grant Nos.2024JJ6184,2022JJ20042,and 2021JJ40653)the Scientific Research Foundation of Hunan Provincial Education Department(Grant Nos.22B0655 and 22A0435)。
文摘Generation of self-generated annular magnetic fields at the rear side of a solid target driven by relativistic laser pulse is investigated by using theoretical analysis and particle-in-cell simulations.The spatial strength distribution of magnetic fields can be accurately predicted by calculating the net flow caused by the superposition of source flow and return flow of hot electrons.The theoretical model established shows good agreement with the simulation results,indicating that the magnetic-field strength scales positively to the temperature of hot electrons.This provides us a way to improve the magnetic-field generation by using a micro-structured plasma grating in front of the solid target.Compared with that for a common flat target,hot electrons can be effectively heated with the well-designed grating size,leading to a stronger magnetic field.The spatial distribution of magnetic fields can be modulated by optimizing the grating period and height as well as the incident angle of the laser pulse.
基金Supported by the National Natural Science Foundation of China under Grant No 91126019. The authors would like to gratefully thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing the beam time.
文摘Thanks to its noteworthy mechanical properties, excellent damage tolerance and good thermal stability, the Ti3SiC2 ternary compound has attracted great concern and has been considered as a potential structural component material for the 4th generation of reactors (e.g., gas fast nuclear reactors) and future fusion reactors. The outstanding properties are due to the nanolameIlar structure which imparts characteristics of both metals and ceramics to this material In our work, Ti3SiC2 samples have been irradiated by C^+ ions with a high fluence of 1.78 × 10^17 ions/cm^2 at a range of temperatures from 120℃~850℃. Subsequently, series of characterization techniques including synchrotron irradiation x-ray diffraction, scanning electron microscopy and nano-indentation are carried out to understand the changes of microstructure and mechanical properties. The composition exhibits high damage tolerant properties and a high recovery rate through the analysis, especially at high temperature. The minimum damage to an irradiated sample appears around 350℃ in the temperature range 120℃-550℃. At a high irradiation temperature, a significant reduction in the damage can be achieved and an almost complete lack of damage compared with an un-irradiated sample is revealed at the temperature of 850℃.
基金supported by the National Key R&D Program of China(No.2019YFB1901100)the National Natural Science Foundation of China(No.11705138)the China National Postdoctoral Program for Innovative Talents(No.BX201600124)。
文摘The limited availability of studies on the natural convection heat transfer characteristics of fluoride salt has hindered progress in the design of passive residual heat removal systems(PRHRS)for molten salt reactors.This paper presents results from a numerical investigation of natural convection heat transfer characteristics of fluoride salt and heat pipes in the drain tank of a PRHRS.Simulation results are compared with experimental data,demonstrating the accuracy of the calculation methodology.Temperature distribution of fluoride salt and heat transfer characteristics are obtained and analyzed.The radial temperature of liquid fluoride salt in the drain tank shows a uniform distribution,while temperatures increase with increase in axial height from the bottom to the top of the drain tank.In addition,natural convection intensity increases with increase in height of the heat pipes in the tank.Spacing between heat pipes has no obvious effect on the natural convection heat transfer coefficient.This study will contribute to the design of passive heat removal systems for advanced nuclear reactors.