The vacuum-assisted prefabricated horizontal drain offers a promising method for strengthening soil slurry,allowing simultaneous filling and vacuum-dewatering via staged construction.However,there is limited research ...The vacuum-assisted prefabricated horizontal drain offers a promising method for strengthening soil slurry,allowing simultaneous filling and vacuum-dewatering via staged construction.However,there is limited research on the unique characteristics of staged filling.This study aims to investigate the vacuum consolidation process of staged-filled soil slurry through laboratory model tests and numerical simulations,also assessing the impact of anionic polyacrylamide.Comparative analyses are conducted between vacuum consolidation with and without anionic polyacrylamide,as well as self-weight consolidation without anionic polyacrylamide.Results reveal contour lines of excess pore pressure,water content,and soil strength forming an ellipse around the prefabricated horizontal drain board.During the consolidation process,a higher degree of consolidation,lower water content,and higher soil strength were observed closer to the prefabricated horizontal drain board.After treatment,the uppermost filling layer exhibits an average water content that was approximately 40%higher than the lower filling layer,and its average strength was about 60%lower.This discrepancy is primarily due to the absence of sealing on the top surface and the relatively short vacuum consolidation time caused by staged filling.The introduction of anionic polyacrylamide-induced flocculation significantly improves the initial consolidation rate but minimally affects the dewatering capacity of vacuum preloading.Using flocculant can enhance both the staged filling rate and soil strength(by 1e2 times).Additionally,employing a staggered arrangement between different prefabricated horizontal drain layers is advisable to prevent top-down penetration in areas with low soil strength.展开更多
This review summarizes recent insights into the Mg corrosion mechanism, clarifies many critical controversial points regarding the Mg corrosion behaviour, and updates some efforts made to extend the industrial applica...This review summarizes recent insights into the Mg corrosion mechanism, clarifies many critical controversial points regarding the Mg corrosion behaviour, and updates some efforts made to extend the industrial application of Mg alloys. Based on the new understandings gained so far, future research directions are also suggested in the review. This review has the following logic. The first section "1. Scope"is a consolidation of the new understandings or developments regarding the Mg corrosion mechanism and the new applications for Mg alloys. It also highlights some key points for the review. The second section "2. Widely accepted knowledge" briefly summarizes the general understanding of Mg corrosion gained so far, which acts as the foundation for the following sections. The third section "3. Recently deepened insights" mainly briefs on some new insights into Mg corrosion phenomena based on recent findings. Different interpretations on the corrosion behaviours are comprehensively discussed in the fourth section "4. Controversial points" and the conclusions are drawn in the subsection"4.5 Clarified points". Apart from the fundamental understandings, various efforts in the application of Mg alloys are presented in the fifth section "5. New applications". Following the research tendency as indicated in the review, prioritized research areas are suggested in "6.Future directions". The review is concluded with "7. Concluding remarks" at last.展开更多
The fields of structural geology and tectonics have witnessed great progress over the last decade and are poised for further expansion in the future. One of the significant breakthroughs is the establishment of the ...The fields of structural geology and tectonics have witnessed great progress over the last decade and are poised for further expansion in the future. One of the significant breakthroughs is the establishment of the 'Beyond Plate Tectonics Theory' where a combination of conceptual models and numerical modeling on plume tectonics and plate tectonics has enabled new insights into the structural and tectonic architecture and processes in the deep interior and deep sea. This paper synthesizes developments of structural geology and tectonics from a macroscopic perspective in deep interior and deep sea. Four key techniques are also reviewed: satellite altimetry for surface structures in deep-sea multi-beam sea-floor mapping; tomography for tectonics of the deep interior; diverse modeling approaches and software for unfolding dynamic evolution; and techniques for HT/HP experiments on material rheology and in situ component measurements.展开更多
Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. The model is coupled of the ocean circulation model ROMS (regional ocean modeling system) to the s...Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. The model is coupled of the ocean circulation model ROMS (regional ocean modeling system) to the surface wave model SWAN (simulating waves nearshore) via the model-coupling toolkit. The LC already certified its importance by many one-dimensional (1D) research and mechanism analysis work. This work focuses on inducing LC's effect in a three-dimensional (3-D) model and applying it to real field modeling. In ROMS, the Mellor-Yamada turbulence closure mixing scheme is modified by including LC's effect. The SWAN imports bathymetry, free surface and current information from the ROMS while exports signifi- cant wave parameters to the ROMS for Stokes wave computing every 6 s. This coupled model is applied to the South China Sea (SCS) during September 2008 cruise. The results show that LC increasing turbulence and deepening mixed layer depth (MLD) at order of O (10 m) in most of the areas, especially in the north part of SCS where most of our measurements operated. The coupled model further includes wave break- ing which will brings more energy into water. When LC works together with wave breaking, more energy is transferred into deep layer and accelerates the MLD deepening. In the north part of the SCS, their effects are more obvious. This is consistent with big wind event in the area of the Zhujiang River Delta. The shallow water depth as another reason makes them easy to influence the ocean mixing as well.展开更多
The Gangdese batholith, more than 2500 km in length, is composed mainly of JurassicMiocene igneous rocks. This batholith is one of the most important constituents of the Tibetan orogenesis and provides an ideal place ...The Gangdese batholith, more than 2500 km in length, is composed mainly of JurassicMiocene igneous rocks. This batholith is one of the most important constituents of the Tibetan orogenesis and provides an ideal place for study of Neo-Tethyan ocean geodynamic evolution and plateau uplift. Recent studies on the Gangdese Jurassic felsic magmatism highlight its juvenile source. However, important aspects concerning the genesis of the juvenile magmatism and related deep geodynamic evolution are still unclear. Here, we report detailed petrological, geochronological, geochemical, whole-rock Sr-Nd isotopic, and in situ Sr-Hf isotopic data for a recently identified hornblende gabbro in the Dongga area, southern Lhasa sub-block. This hornblende gabbro is dominated by hornblende and plagioclase, dated at Early Jurassic(ca. 180–190 Ma), and characterized by a narrow compositional range in SiO2(49.38wt%–52.27wt%), MgO(4.08wt%–7.00wt%), FeO(10.43wt%–11.77wt%), Na2O(2.58wt%–3.51wt%), and K2O(0.48wt%–1.53wt%). It has depleted isotopic signatures, with whole-rock(87Sr/86Sr)i ratios of 0.7033–0.7043, εNd(t) values of +4.90 to +6.99, in situ plagioclase(87Sr/86Sr)i ratios of 0.7034–0.7042, and zircon εHf(t) of +12.2 to +16.8. Our results integrated with published data suggest a model of Gangdese juvenile crustal growth by a subduction-related water-enriched mantle wedge. The hydrous partial melting of the lithosphere mantle was triggered by the dehydration of a Neo-Tethyan oceanic slab. This mafic magmatism emplaced in the middle-lower crust of intraoceanic arcs or active continental margins, leading to Jurassic juvenile crustal growth in southern Tibet.展开更多
The plate flexure and normal faulting characteristics along the Tonga, Japan, Izu-Bonin and Mariana Trenches are investigated by combining observations and modeling of elastoplastic deformation of the subducting plate...The plate flexure and normal faulting characteristics along the Tonga, Japan, Izu-Bonin and Mariana Trenches are investigated by combining observations and modeling of elastoplastic deformation of the subducting plate. The observed average trench relief is found to be the smallest at the Japan Trench(3 km) and the largest at the Mariana Trench(4.9 km), and the average fault throw is the smallest at the Japan Trench(113 m) and the largest at the Tonga Trench(284 m). A subducting plate is modeled to bend and generate normal faults subjected to three types of tectonic loading at the trench axis: vertical loading, bending moment, and horizontal tensional force. It is inverted for the solutions of tectonic loading that best fit the observed plate flexure and normal faulting characteristics of the four trenches. The results reveal that a horizontal tensional force(HTF) for the Japan Trench is 33%, 50% and 60% smaller than those of the Mariana, Tonga and Izu-Bonin Trenches, respectively. The normal faults are modeled to penetrate to a maximum depth of 29, 23, 32 and 32 km below the sea floor for the Tonga,Japan, Izu-Bonin and Mariana Trenches, respectively, which is consistent with the depths of relocated normal faulting earthquakes in the Japan and Izu-Bonin Trenches. Moreover, it is argued that the calculated horizontal tensional force is generally positively correlated with the observed mean fault throw, while the integrated area of the reduction in the effective elastic thickness is correlated with the trench relief. These results imply that the HTF plays a key role in controlling the normal faulting pattern and that plate weakening can lead to significant increase in the trench relief.展开更多
The oil-gas migration and accumulation in the Songliao Basin were analyzed in the view of fluid dynamics by the authors. The key point of fluid dynamics is hydrodynamics. Oil-gas migration and accumulation are related...The oil-gas migration and accumulation in the Songliao Basin were analyzed in the view of fluid dynamics by the authors. The key point of fluid dynamics is hydrodynamics. Oil-gas migration and accumulation are related closely with formation and evolution of hydrodynamic field. Based on abundant data, initial formation pressure and other parameters, such as water head were studied. They can be used to understand the present distribution of hydrodynamic field and its hydrochemical features. Generally, the hydrodynamic field in the basin is obviously asymmetrical. In its north and east part, there are the areas of centripetal flow caused by topographic relief when meteoric water permeate downwards. Its south part is an evaporation-concentration area. The central depression is an area of centrifugal flow driven by sediment compaction and its cross-formational flow area. Only at the basin margin and in the local uplifted and denudated area are the meteoric water permeating downwards areas. The centrifugal flow driven by sediment compaction is the main dynamic factor that induces oil-gas migration and accumulation and its formation period corresponding to the main stage of oil-gas migration and accumulation. Moreover, the evolution of hydrodynamic field has the cyclic property, which results in phased oil-gas migration by stages, and further dominates the terraced annular oil and gas distribution, concentric with their corresponding sags.展开更多
The geologic production of abiotic organic compounds has been the subject of increasing scientific attention due to their use in the global carbon flux balance,by chemosynthetic biological communities,and for energy r...The geologic production of abiotic organic compounds has been the subject of increasing scientific attention due to their use in the global carbon flux balance,by chemosynthetic biological communities,and for energy resources.Extensive analysis of methane(CH_(4))and other organics in diverse geologic settings,combined with thermodynamic modelings and laboratory simulations,have yielded insights into the distribution of specific abiotic organic molecules on Earth and the favorable conditions and pathways under which they form.This updated and comprehensive review summarizes published results of petrological,thermodynamic,and experimental investigations of possible pathways for the formation of particular species of abiotic simple hydrocarbon molecules such as CH_(4),and of complex hydrocarbon systems,e.g.,long-chain hydrocarbons and even solid carbonaceous matters,in various geologic processes,distinguished into three classes:(1)pre-to early planetary processes;(2)mantle and magmatic processes;and(3)the gas/water-rock reaction processes in low-pressure ultramafic rock and high-pressure subduction zone systems.We not only emphasize how organics are abiotically synthesized but also explore the role or changes of organics in evolutionary geological environments after synthesis,such as phase transitions or organic-mineral interactions.Correspondingly,there is an urgent need to explore the diversity of abiotic organic compounds prevailing on Earth.展开更多
We quantified the systematic variations in global transform fault morphology,revealing a first-order dependence on the spreading rate.(1)The average age offset of both the full transform and transform sub-segments dec...We quantified the systematic variations in global transform fault morphology,revealing a first-order dependence on the spreading rate.(1)The average age offset of both the full transform and transform sub-segments decrease with increasing spreading rate.(2)The average depth of both the transform valley and adjacent ridges are smaller in the fast compared to the slow systems,reflecting possibly density anomalies associated with warmer mantle at the fast systems and rifting at the slow ridges.However,the average depth difference between the transform valley and adjacent ridges is relatively constant from the fast to slow systems.(3)The nodal basin at a ridge-transform intersection is deeper and dominant at the ultraslow and slow systems,possibly reflecting a lower magma supply and stronger viscous resistance to mantle upwelling near a colder transform wall.In contrast,the nodal high,is most prominent in the fast,intermediate,and hotspot-influenced systems,where robust axial volcanic ridges extend toward the ridge-transform intersection.(4)Statistically,the average transform valley is wider at a transform system of larger age offset,reflecting thicker deforming plates flanking the transform fault.(5)The maximum magnitude of the transform earthquakes increases with age offset owing to an increase in the seismogenic area.Individual transform faults also exhibit significant anomalies owing to the complex local tectonic and magmatic processes.展开更多
Detailed studies of petrology, palaeocurrent direction, paiaeogeomorphology and palaeohydrody-namics have been conducted for the Permian-Triassic Cangfanggou Group in the foredeep of the Bogda Mountains in the southea...Detailed studies of petrology, palaeocurrent direction, paiaeogeomorphology and palaeohydrody-namics have been conducted for the Permian-Triassic Cangfanggou Group in the foredeep of the Bogda Mountains in the southeastern Junggar Basin, Xinjiang. Sedimentary environments and fades of alluvial fans and pebbly braided rivers, sandy braided rivers, meandering rivers, low-sinuosity rivers, swamps and fresh-water lakes are recognized in the group. Climate and tectonics of source areas strongly controlled the evolution of the sedimentary environments and facies in the foredeep. The block faulting in the Bogda Mountains increased the ground slope, which led to a drastic increase in the grain size of the sediments. Humid climate, being beneficial to plant growth, would provide protection of channel banks and at the same time weaken chemical weathering in the source area, thus large amounts of clay materials are available for the formation of clay plugs. As a result, stable banks and meandering river belts are formed. Conversely, increasing aridity would strengthen mechanical weathering and reduce the number of clay plugs. Besides, plants would diminish gradually and channels would become more mobile. In this case the decrease of transported clay materials would reduce the stability of the bank and result in a wider and shallower channel. Therefore, humid climate is beneficial to the formation of meandering rivers even if there is strong block faulting in the source areas and the ground slope is very large. As aridity further increases, plants would diminish and vanish at last, the meandering rivers prevalent under humid climate conditions would be transformed to low-sinuosity rivers even if the ground is gentle and the land is tectonically stable. And as the climate became more arid and the source area uplifted intensively to provide more sedimentary materials, low-sinuosity rivers would be transformed to braided ones quickly, and wedge-like sedimentary bodies of the braided rivers would then advance towards the lower reaches. The increasingly arid climate led to prevailing mechanical and diminishing plant protection to the banks. Both active tectonic regime and humid climate resulted in very shallow and mobile channels, i.e. a braided river system.The climate plays an important role in the evolution of rivers and lakes. The sinuosity and braiding parameters of channels are a result of complex interaction between climate (clay material supply, plant protection of the banks, flood events and so on) and tectonic regime (lithology of the source area, slopes and so on). Both factors can be estimated by sedimentological studies in the foothill belt.展开更多
Geological disasters such as slope failure and landslides can cause loss of life and property.Therefore,reproducing their evolution process is of great importance for risk assessment and mitigation.The recently develo...Geological disasters such as slope failure and landslides can cause loss of life and property.Therefore,reproducing their evolution process is of great importance for risk assessment and mitigation.The recently developed SIMSAND critical state sand model combined with the smoothed particle hydrodynamics(SPH)method is adopted in this work to study slope failure under large deformations.To illustrate the efficiency and accuracy of the SIMSAND-SPH approach,a series of slope collapse studies using the discrete element method(DEM)considering various particle shapes(i.e.spherical,tetrahedral and elongated)is adopted as benchmarks.The parameters of the SIMSAND model are calibrated using DEM triaxial tests.In comparison to the DEM simulations,the runout distance and final slope height are well characterized with the SIMSAND-SPH approach with less computational cost.All comparisons show that the SIMSAND-SPH approach is highly efficient and accurate,which can be an alternative numerical tool to simulate real scale granular flow.展开更多
Recent studies have demonstrated the ability of seismic oceanography to reveal finescale vertical structures of water column in the oceans based on multichannel seismic(MCS)reflection data.Such information can clarify...Recent studies have demonstrated the ability of seismic oceanography to reveal finescale vertical structures of water column in the oceans based on multichannel seismic(MCS)reflection data.Such information can clarify the dynamic processes of mixing,exchange,and translation of water mass and energy.In this study,we present four MCS lines and satellite data to show high-resolution seismic images of shallow waters over the Shatsky Rise in the Northwest Pacific Ocean,where the Kuroshio Exten-sion passes and bifurcates.One of our MCS transects crossed the center of an anticyclonic warm eddy on August 28,2010,confirmed by satellite data such as sea level anomaly(SLA),geostrophic current anomaly(GCA),and sea surface temperature anomaly(SSTa).The seismic image showed that the eddy vertical structure featured a bowl-like shape and onion-like internal layering.The slightly tilted(<0.5°)surface of the eddy was 400m below the sea surface,indicating a subsurface eddy.The eddy was inferred to have a radius of 50 km and a maximum thickness of 500m.Other MCS sections demonstrated the submesoscale structure of oceanfronts,characterized by the dipping reflectors(>2°-3°)at the boundaries between water masses with differing properties.In addition,the discrepancies in SLA,GCA,and SSTa between water masses resulted in different seismic reflectivities.The water masses with high SLA,anticyclonic GCA and positive SSTa featured high-amplitude,continuous,clear-layered,and non-linear reflections,whereas those with low SLA,cyclonic GCA,and negative SSTa were associated with weak,fragmented,less stratification,and more linear reflectors.展开更多
This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and break...This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and breaking. This numerical model is improved by 1) introducing Wen's frequency spectrum and Mitsuyasu's directional function, which are more suitable to the coastal area of China; 2) considering energy dissipation caused by bottom friction, which ensures more accurate results for large-scale and shallow water areas; 3) taking into account a non-linear dispersion relation. Predictions using the extended wave model are carried out to study the feasibility of constructing the Ai Hua yacht port in Qingdao, China, with a comparison between two port layouts in design. Wave fields inside the port for different incident wave directions, water levels and return periods are simulated, and then two kinds of parameters are calculated to evaluate the wave conditions for the two layouts. Analyses show that Layout I is better than Layout II. Calculation results also show that the harbor will be calm for different wave directions under the design water level. On the contrary, the wave conditions do not wholly meet the requirements of a yacht port for ship berthing under the extreme water level. For safety consideration, the elevation of the breakwater might need to be properly increased to prevent wave overtopping under such water level. The extended numerical simulation model may provide an effective approach to computing wave heights in a harbor.展开更多
Diversion of the Yellow River is a unique geological event in offshore China,causing changes of the sedimentary environment in eastern China Seas.The last diversion took place in AD 1855,with the estuary diverted from...Diversion of the Yellow River is a unique geological event in offshore China,causing changes of the sedimentary environment in eastern China Seas.The last diversion took place in AD 1855,with the estuary diverted from the Yellow Sea into the Bohai Sea.The identification of the river diversion events in the shelf sediments would not only provide the definite ages for the sediments,but also give a clue for better understanding of the sedimentation in that area.In this study,210 Pb,grain size,geochemical element,and foraminiferal data in core H205 from the north Yellow Sea were systematically investigated.A high-resolution sedimentary record was established,which was coupled with the Yellow River diversion and runoff changes.The results show that the foraminiferal composition and foraminiferal abundance of the sediments from the north Yellow Sea had good response to the Yellow River diversion in 1855.Before the change,shallow water assemblages dominated the foraminifera,and the abundance of each foraminiferal species was very low.After the diversion event,the abundance of most foraminifera increased sharply,with a maximum increase of 16 times,and the assemblage was still dominated by shallow water species.Furthermore,the changes in foraminiferal abundance in the core sediments corresponded well with the discharge fluctuation of the Yellow River since 1855.When the Yellow River began entering the Bohai Sea,the Yellow River water,which is rich in nutrients,along with the coastal currents affected the north Yellow Sea,increased the primary productivity in the north Yellow Sea,which is the main reason for the abrupt increase and fluctuation of foraminiferal abundance in this area.At the meantime,the East Asian winter monsoon could also promote the development of nearshore foraminiferal species by enhancing the coastal currents.展开更多
A fine resolution model has been applied to get more insight into the effects of a modified runoff due to the Three-Gorges-Dam (TGD) on the East China Sea (ECS).The region of interest was confined to the offshore ...A fine resolution model has been applied to get more insight into the effects of a modified runoff due to the Three-Gorges-Dam (TGD) on the East China Sea (ECS).The region of interest was confined to the offshore area in the vicinity of the Changjiang River.To the east,it extended up to the area southwest of Cheju Island.The model was used to evaluate the effect of a modified runoff on the water properties of the adjacent regions like the Changjiang diluted water (CDW) and the Zhoushan Fishing Ground.The sensitivity of the ECS to a modified Changjiang runoff was explored firstly by sensitivity studies and secondly by experiments based on historical runoff records and water management plans of the TGD.These experiments led to the general conclusion that the most affected area by runoff is located close to the Changjiang River mouth.The area of influence has an extension of about 150 km×150 km.In the realistic experiment,the related anomalies reached their maximum value in early summer (May).In normal years the related salinity anomalies can get to as large as 2.展开更多
In recent years,great earthquakes occurred within the Wharton Basin in the eastern Indian Ocean,and they have been associa-ted with active faulting on the ancient oceanic crust.Large seismogenic faults were thought to...In recent years,great earthquakes occurred within the Wharton Basin in the eastern Indian Ocean,and they have been associa-ted with active faulting on the ancient oceanic crust.Large seismogenic faults were thought to be the fault reactivation on the ancient oceanic crust,but these phenomena are still unclear and require examination.This study used high-quality multibeam bathymetry and multichannel seismic data collected over the northern Ninetyeast Ridge to investigate detailed fault geometry,structure,and activity.We recognized 12 large linear active faults by integrating bathymetry maps and multichannel seismic reflection profiles.Our results showed that these faults have high angles,and they all displaced the basement and propagated to the seafloor with distinct fault scarps.They trended NWW-SEE with a spacing of 10–40km and were parallel to each other and the nearby subfault of the 2012 great intraplate earthquake,suggesting similar stress fields.These faults are also in agreement with the orientations of magnetic isochrons,implying their formation by seafloor spreading.Furthermore,regarding the strike-slip focal mechanism of 2012 earthquakes,we proposed that these faults were created early by a normal spreading process and then evolved into a strike-slip pattern since the ancient oceanic crust ap-proached the subduction zones.展开更多
Seismicity in ocean ridge-transform systems reveals fundamental processes of mid-ocean ridges,while comparisons of seismicity in different oceans remain rare due to a lack of detection of small events.From 1996 to 200...Seismicity in ocean ridge-transform systems reveals fundamental processes of mid-ocean ridges,while comparisons of seismicity in different oceans remain rare due to a lack of detection of small events.From 1996 to 2003,the Pacific Marine Environmental Laboratory of the National Oceanic and Atmospheric Administration(NOAA/PMEL)deployed several hydrophones in the eastern Pacific Ocean and the northern Atlantic Ocean.These hydrophones recorded earthquakes with small magnitudes,providing us with opportunities to study the seismic characteristics of ridge-transform systems at different spreading rates and make further comparisons of their differences.This study comparatively analyzed hydroacoustic and teleseismic data recorded on the fast-spreading East Pacific Rise(EPR,10°S to 12°N),intermediate-spreading Galapagos Ridge(103°W to 80°W),and slow-spreading Mid-Atlantic Ridge(MAR,15°N to 37°N).We present a systematic study of the spatial and temporal distribution of events,aftershock seismicity,and possible triggering mechanisms of aftershock sequences.Our analysis yields the following conclusions.(1)From the hydroacoustic data,the EPR transform faults had the highest average seismicity rate among the three regions.(2)Along-ridge event distributions show that a high number of earthquakes were concentrated on the EPR,while they became dispersed on the GR and fewer and more scattered on the MAR,reflecting that the different tectonic origins were closely correlated with the spreading rate.(3)Analysis from mainshock-aftershock sequences shows no significant differences in the aftershock decay rate among the three regions.(4)Multiple types of aftershock triggering models were inferred from Coulomb stress changes:strike-slip mainshocks triggered strike-slip aftershocks and normal faulting aftershocks,and normal faulting mainshocks triggered normal faulting aftershocks.Although these results are case studies,they may be applicable to other ocean ridge-transform systems in future investigations.Our results provide important new insights into the seismicity of global ocean ridge-transform systems.展开更多
The Jurassic oceanic crust is the oldest existing oceanic crust on earth,and although distributed sparsely,carries essential information about the earth's evolution.The area around the Pigafetta Basin in the west ...The Jurassic oceanic crust is the oldest existing oceanic crust on earth,and although distributed sparsely,carries essential information about the earth's evolution.The area around the Pigafetta Basin in the west Pacific Ocean(also known as the Jurassic Quiet Zone,JQZ)is one of a few areas where the Jurassic oceanic crust is present.This study takes full advantage of high-resolution multichannel seismic reflection profiles in combination with bathymetry,magnetic,and gravity data from the JQZ to examine the structure,deformation,and morphology of the Jurassic oceanic crust.Our results show the following insights:1)The Moho lies at 2–3 s in two-way travel time beneath the seafloor with the segmented feature.The gaps between the Moho segments well correspond to the seamounts on the seafloor,suggesting the upward migration of magma from the mantle has interrupted the pre-existing Moho.2)The oceanic crust is predominantly deformed by crustal-scale thrust faults,normal faults cutting through the top of basement,and vertical seismic disturbance zones in association with migration of thermal fluids.The thrust faults are locally found and interpreted as the results of tectonic inversion.3)Seafloor morphology in the JQZ is characterized by fault scarps,fold scarps,seamounts,and small hills,indicating the occurrence of active faults.4)The oceanic crust in the JQZ and East Pacific Rise has many structural and geometrical variations,such as the thickness of sediments,seafloor topography,basement morphology,fault size and type.展开更多
Typhoons in the western Pacific have a significant impact on the transport of heat,salt and particles through the Luzon Strait.However,there are very limited field observations of this impact because of extreme diffic...Typhoons in the western Pacific have a significant impact on the transport of heat,salt and particles through the Luzon Strait.However,there are very limited field observations of this impact because of extreme difficulties and even dangers for ship-based measurements during the rough weather.Here,we present the preliminary results from analyzing a dataset collected by a glider deployed west of the Luzon Strait a few days prior to the arrival of typhoon MITAG.The gilder data revealed an abnormally salinity(>34.8)subsurface water apparently sourced from Kuroshio intrusion during the typhoon.When typhoon MITAG traveled on the east of the Luzon Strait,the positive wind stress curl strengthened the cyclonic eddy and weakened the anti-cyclonic eddy.This led to a slowdown of Kuroshio and made its intrusion easier.The main axis of the Kuroshio at the northern part of the strait shifted westward after the typhoon and did not return to its original position until a week later.The Ekman transport from persistent northerly wind of typhoon MITAG was significant,but its importance in enhancing the Kuroshio intrusion is only secondary relative to the eddies variations.展开更多
A cabled ocean observatory system that can provide abundant power and broad bandwidth communication for undersea instruments is developed. A 10 kV direct current (kVDC) with up to 10 kW power, along with l Gigabit/s...A cabled ocean observatory system that can provide abundant power and broad bandwidth communication for undersea instruments is developed. A 10 kV direct current (kVDC) with up to 10 kW power, along with l Gigabit/sec Ethemet communication, can be transmitted from the shore to the seafloor through an umbilical armored cable. A subsea junction box is fixed at a cable terminal, enabling the extension of up to nine connections. The box consists of three main pressure vessels that perform power conversion, power distribution, and real-time communication functions. A method of stacking modules is used to design the power conversion system in order to reduce the 10 kV voltage to levels that can power the attached instruments. A power distribution system and an Ethemet communication system are introduced to control the power supply and transmit data or commands between the terminals and the shore station, respectively. Specific validations of all sections were qualified in a laboratory environment prior to the sea trial. The ocean observatory system was then deployed at the coast of the East China Sea along with three in situ instruments for a 14-day test. The results show that this high voltage-powered observatory system is effective for subsea long-term and real-time observations.展开更多
基金supported by the Research Grants Council of Hong Kong Special Administrative Region Government of China(Grant Nos.15210322 and R5037-18)the financial support(Grant No.86902-00000240)from Shenzhen University.
文摘The vacuum-assisted prefabricated horizontal drain offers a promising method for strengthening soil slurry,allowing simultaneous filling and vacuum-dewatering via staged construction.However,there is limited research on the unique characteristics of staged filling.This study aims to investigate the vacuum consolidation process of staged-filled soil slurry through laboratory model tests and numerical simulations,also assessing the impact of anionic polyacrylamide.Comparative analyses are conducted between vacuum consolidation with and without anionic polyacrylamide,as well as self-weight consolidation without anionic polyacrylamide.Results reveal contour lines of excess pore pressure,water content,and soil strength forming an ellipse around the prefabricated horizontal drain board.During the consolidation process,a higher degree of consolidation,lower water content,and higher soil strength were observed closer to the prefabricated horizontal drain board.After treatment,the uppermost filling layer exhibits an average water content that was approximately 40%higher than the lower filling layer,and its average strength was about 60%lower.This discrepancy is primarily due to the absence of sealing on the top surface and the relatively short vacuum consolidation time caused by staged filling.The introduction of anionic polyacrylamide-induced flocculation significantly improves the initial consolidation rate but minimally affects the dewatering capacity of vacuum preloading.Using flocculant can enhance both the staged filling rate and soil strength(by 1e2 times).Additionally,employing a staggered arrangement between different prefabricated horizontal drain layers is advisable to prevent top-down penetration in areas with low soil strength.
基金The support of the National Natural Science Foundation of China (Nos.52250710159,51731008,51671163)。
文摘This review summarizes recent insights into the Mg corrosion mechanism, clarifies many critical controversial points regarding the Mg corrosion behaviour, and updates some efforts made to extend the industrial application of Mg alloys. Based on the new understandings gained so far, future research directions are also suggested in the review. This review has the following logic. The first section "1. Scope"is a consolidation of the new understandings or developments regarding the Mg corrosion mechanism and the new applications for Mg alloys. It also highlights some key points for the review. The second section "2. Widely accepted knowledge" briefly summarizes the general understanding of Mg corrosion gained so far, which acts as the foundation for the following sections. The third section "3. Recently deepened insights" mainly briefs on some new insights into Mg corrosion phenomena based on recent findings. Different interpretations on the corrosion behaviours are comprehensively discussed in the fourth section "4. Controversial points" and the conclusions are drawn in the subsection"4.5 Clarified points". Apart from the fundamental understandings, various efforts in the application of Mg alloys are presented in the fifth section "5. New applications". Following the research tendency as indicated in the review, prioritized research areas are suggested in "6.Future directions". The review is concluded with "7. Concluding remarks" at last.
基金Funding Sources:Marine 863 Project (No.2009AA093401)Projects of the National Natural Science Foundation of China (Nos.41072152,90814011 and 41190072)
文摘The fields of structural geology and tectonics have witnessed great progress over the last decade and are poised for further expansion in the future. One of the significant breakthroughs is the establishment of the 'Beyond Plate Tectonics Theory' where a combination of conceptual models and numerical modeling on plume tectonics and plate tectonics has enabled new insights into the structural and tectonic architecture and processes in the deep interior and deep sea. This paper synthesizes developments of structural geology and tectonics from a macroscopic perspective in deep interior and deep sea. Four key techniques are also reviewed: satellite altimetry for surface structures in deep-sea multi-beam sea-floor mapping; tomography for tectonics of the deep interior; diverse modeling approaches and software for unfolding dynamic evolution; and techniques for HT/HP experiments on material rheology and in situ component measurements.
基金the National Basic Research Program of China under contract Nos 2011CB403501 and 2012CB417402the Open Research Foundation for the State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,State Oceanic Administration under contract No. SOED1210the Fund for Creative Research Groups by NSFC under contract No. 41121064
文摘Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. The model is coupled of the ocean circulation model ROMS (regional ocean modeling system) to the surface wave model SWAN (simulating waves nearshore) via the model-coupling toolkit. The LC already certified its importance by many one-dimensional (1D) research and mechanism analysis work. This work focuses on inducing LC's effect in a three-dimensional (3-D) model and applying it to real field modeling. In ROMS, the Mellor-Yamada turbulence closure mixing scheme is modified by including LC's effect. The SWAN imports bathymetry, free surface and current information from the ROMS while exports signifi- cant wave parameters to the ROMS for Stokes wave computing every 6 s. This coupled model is applied to the South China Sea (SCS) during September 2008 cruise. The results show that LC increasing turbulence and deepening mixed layer depth (MLD) at order of O (10 m) in most of the areas, especially in the north part of SCS where most of our measurements operated. The coupled model further includes wave break- ing which will brings more energy into water. When LC works together with wave breaking, more energy is transferred into deep layer and accelerates the MLD deepening. In the north part of the SCS, their effects are more obvious. This is consistent with big wind event in the area of the Zhujiang River Delta. The shallow water depth as another reason makes them easy to influence the ocean mixing as well.
基金jointly supported by The National Key Research and Development Project of China(2016YFC0600310)National Science Foundation of China(4132010400441672197 and 41302054)
文摘The Gangdese batholith, more than 2500 km in length, is composed mainly of JurassicMiocene igneous rocks. This batholith is one of the most important constituents of the Tibetan orogenesis and provides an ideal place for study of Neo-Tethyan ocean geodynamic evolution and plateau uplift. Recent studies on the Gangdese Jurassic felsic magmatism highlight its juvenile source. However, important aspects concerning the genesis of the juvenile magmatism and related deep geodynamic evolution are still unclear. Here, we report detailed petrological, geochronological, geochemical, whole-rock Sr-Nd isotopic, and in situ Sr-Hf isotopic data for a recently identified hornblende gabbro in the Dongga area, southern Lhasa sub-block. This hornblende gabbro is dominated by hornblende and plagioclase, dated at Early Jurassic(ca. 180–190 Ma), and characterized by a narrow compositional range in SiO2(49.38wt%–52.27wt%), MgO(4.08wt%–7.00wt%), FeO(10.43wt%–11.77wt%), Na2O(2.58wt%–3.51wt%), and K2O(0.48wt%–1.53wt%). It has depleted isotopic signatures, with whole-rock(87Sr/86Sr)i ratios of 0.7033–0.7043, εNd(t) values of +4.90 to +6.99, in situ plagioclase(87Sr/86Sr)i ratios of 0.7034–0.7042, and zircon εHf(t) of +12.2 to +16.8. Our results integrated with published data suggest a model of Gangdese juvenile crustal growth by a subduction-related water-enriched mantle wedge. The hydrous partial melting of the lithosphere mantle was triggered by the dehydration of a Neo-Tethyan oceanic slab. This mafic magmatism emplaced in the middle-lower crust of intraoceanic arcs or active continental margins, leading to Jurassic juvenile crustal growth in southern Tibet.
基金The National Natural Science Foundation of China under contract Nos 41706056,91628301 and U1606401the Program of Chinese Academy of Sciences under contract Nos Y4SL021001,QYZDY-SSW-DQC005,YZ201325 and YZ201534+1 种基金the Natural Science Foundation of Guangdong Province of China under contract No.2017A030310066the China Ocean Mineral Resources R&D Association under contract No.DY135-S2-1-04
文摘The plate flexure and normal faulting characteristics along the Tonga, Japan, Izu-Bonin and Mariana Trenches are investigated by combining observations and modeling of elastoplastic deformation of the subducting plate. The observed average trench relief is found to be the smallest at the Japan Trench(3 km) and the largest at the Mariana Trench(4.9 km), and the average fault throw is the smallest at the Japan Trench(113 m) and the largest at the Tonga Trench(284 m). A subducting plate is modeled to bend and generate normal faults subjected to three types of tectonic loading at the trench axis: vertical loading, bending moment, and horizontal tensional force. It is inverted for the solutions of tectonic loading that best fit the observed plate flexure and normal faulting characteristics of the four trenches. The results reveal that a horizontal tensional force(HTF) for the Japan Trench is 33%, 50% and 60% smaller than those of the Mariana, Tonga and Izu-Bonin Trenches, respectively. The normal faults are modeled to penetrate to a maximum depth of 29, 23, 32 and 32 km below the sea floor for the Tonga,Japan, Izu-Bonin and Mariana Trenches, respectively, which is consistent with the depths of relocated normal faulting earthquakes in the Japan and Izu-Bonin Trenches. Moreover, it is argued that the calculated horizontal tensional force is generally positively correlated with the observed mean fault throw, while the integrated area of the reduction in the effective elastic thickness is correlated with the trench relief. These results imply that the HTF plays a key role in controlling the normal faulting pattern and that plate weakening can lead to significant increase in the trench relief.
文摘The oil-gas migration and accumulation in the Songliao Basin were analyzed in the view of fluid dynamics by the authors. The key point of fluid dynamics is hydrodynamics. Oil-gas migration and accumulation are related closely with formation and evolution of hydrodynamic field. Based on abundant data, initial formation pressure and other parameters, such as water head were studied. They can be used to understand the present distribution of hydrodynamic field and its hydrochemical features. Generally, the hydrodynamic field in the basin is obviously asymmetrical. In its north and east part, there are the areas of centripetal flow caused by topographic relief when meteoric water permeate downwards. Its south part is an evaporation-concentration area. The central depression is an area of centrifugal flow driven by sediment compaction and its cross-formational flow area. Only at the basin margin and in the local uplifted and denudated area are the meteoric water permeating downwards areas. The centrifugal flow driven by sediment compaction is the main dynamic factor that induces oil-gas migration and accumulation and its formation period corresponding to the main stage of oil-gas migration and accumulation. Moreover, the evolution of hydrodynamic field has the cyclic property, which results in phased oil-gas migration by stages, and further dominates the terraced annular oil and gas distribution, concentric with their corresponding sags.
基金financially supported by the National Key Research and Development Program of China(Grant No.2019YFA0708501)the NSFC Major Research Plan on West-Pacific Earth System Multispheric Interactions(Grant No.92158206)。
文摘The geologic production of abiotic organic compounds has been the subject of increasing scientific attention due to their use in the global carbon flux balance,by chemosynthetic biological communities,and for energy resources.Extensive analysis of methane(CH_(4))and other organics in diverse geologic settings,combined with thermodynamic modelings and laboratory simulations,have yielded insights into the distribution of specific abiotic organic molecules on Earth and the favorable conditions and pathways under which they form.This updated and comprehensive review summarizes published results of petrological,thermodynamic,and experimental investigations of possible pathways for the formation of particular species of abiotic simple hydrocarbon molecules such as CH_(4),and of complex hydrocarbon systems,e.g.,long-chain hydrocarbons and even solid carbonaceous matters,in various geologic processes,distinguished into three classes:(1)pre-to early planetary processes;(2)mantle and magmatic processes;and(3)the gas/water-rock reaction processes in low-pressure ultramafic rock and high-pressure subduction zone systems.We not only emphasize how organics are abiotically synthesized but also explore the role or changes of organics in evolutionary geological environments after synthesis,such as phase transitions or organic-mineral interactions.Correspondingly,there is an urgent need to explore the diversity of abiotic organic compounds prevailing on Earth.
基金The foundation of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0205the National Natural Science Foundation of China under contract Nos 41976064,41890813,41976066,91958211,and 41706056+4 种基金the scholarship of China Scholarship Councilthe foundations of the Chinese Academy of Sciences under contract Nos Y4SL021001,QYZDY-SSW-DQC005,133244KYSB20180029,and 131551KYSB20200021the National Key Research and Development Program of China under contract Nos 2018YFC0309800 and 2018YFC0310105the Foundation of the China Ocean Mineral Resources Research and Development Association under contract No.DY135-S2-1-04the Guangdong Basic and Applied Basic Research Foundation under contract No.2021A1515012227。
文摘We quantified the systematic variations in global transform fault morphology,revealing a first-order dependence on the spreading rate.(1)The average age offset of both the full transform and transform sub-segments decrease with increasing spreading rate.(2)The average depth of both the transform valley and adjacent ridges are smaller in the fast compared to the slow systems,reflecting possibly density anomalies associated with warmer mantle at the fast systems and rifting at the slow ridges.However,the average depth difference between the transform valley and adjacent ridges is relatively constant from the fast to slow systems.(3)The nodal basin at a ridge-transform intersection is deeper and dominant at the ultraslow and slow systems,possibly reflecting a lower magma supply and stronger viscous resistance to mantle upwelling near a colder transform wall.In contrast,the nodal high,is most prominent in the fast,intermediate,and hotspot-influenced systems,where robust axial volcanic ridges extend toward the ridge-transform intersection.(4)Statistically,the average transform valley is wider at a transform system of larger age offset,reflecting thicker deforming plates flanking the transform fault.(5)The maximum magnitude of the transform earthquakes increases with age offset owing to an increase in the seismogenic area.Individual transform faults also exhibit significant anomalies owing to the complex local tectonic and magmatic processes.
文摘Detailed studies of petrology, palaeocurrent direction, paiaeogeomorphology and palaeohydrody-namics have been conducted for the Permian-Triassic Cangfanggou Group in the foredeep of the Bogda Mountains in the southeastern Junggar Basin, Xinjiang. Sedimentary environments and fades of alluvial fans and pebbly braided rivers, sandy braided rivers, meandering rivers, low-sinuosity rivers, swamps and fresh-water lakes are recognized in the group. Climate and tectonics of source areas strongly controlled the evolution of the sedimentary environments and facies in the foredeep. The block faulting in the Bogda Mountains increased the ground slope, which led to a drastic increase in the grain size of the sediments. Humid climate, being beneficial to plant growth, would provide protection of channel banks and at the same time weaken chemical weathering in the source area, thus large amounts of clay materials are available for the formation of clay plugs. As a result, stable banks and meandering river belts are formed. Conversely, increasing aridity would strengthen mechanical weathering and reduce the number of clay plugs. Besides, plants would diminish gradually and channels would become more mobile. In this case the decrease of transported clay materials would reduce the stability of the bank and result in a wider and shallower channel. Therefore, humid climate is beneficial to the formation of meandering rivers even if there is strong block faulting in the source areas and the ground slope is very large. As aridity further increases, plants would diminish and vanish at last, the meandering rivers prevalent under humid climate conditions would be transformed to low-sinuosity rivers even if the ground is gentle and the land is tectonically stable. And as the climate became more arid and the source area uplifted intensively to provide more sedimentary materials, low-sinuosity rivers would be transformed to braided ones quickly, and wedge-like sedimentary bodies of the braided rivers would then advance towards the lower reaches. The increasingly arid climate led to prevailing mechanical and diminishing plant protection to the banks. Both active tectonic regime and humid climate resulted in very shallow and mobile channels, i.e. a braided river system.The climate plays an important role in the evolution of rivers and lakes. The sinuosity and braiding parameters of channels are a result of complex interaction between climate (clay material supply, plant protection of the banks, flood events and so on) and tectonic regime (lithology of the source area, slopes and so on). Both factors can be estimated by sedimentological studies in the foothill belt.
基金supported by Shenzhen(China)Science and Technology Innovation Committee(Grant Nos.JSGG20180504170449754)supported by Center for Computational Science and Engineering at Southern University of Science and Technology,Shenzhen,China。
文摘Geological disasters such as slope failure and landslides can cause loss of life and property.Therefore,reproducing their evolution process is of great importance for risk assessment and mitigation.The recently developed SIMSAND critical state sand model combined with the smoothed particle hydrodynamics(SPH)method is adopted in this work to study slope failure under large deformations.To illustrate the efficiency and accuracy of the SIMSAND-SPH approach,a series of slope collapse studies using the discrete element method(DEM)considering various particle shapes(i.e.spherical,tetrahedral and elongated)is adopted as benchmarks.The parameters of the SIMSAND model are calibrated using DEM triaxial tests.In comparison to the DEM simulations,the runout distance and final slope height are well characterized with the SIMSAND-SPH approach with less computational cost.All comparisons show that the SIMSAND-SPH approach is highly efficient and accurate,which can be an alternative numerical tool to simulate real scale granular flow.
基金This research was supported by the National Key R&D Program of China(No.2018YFC0309800)the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515020098)+3 种基金the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0205)the National Natural Science Foundation of China(Nos.41776058 and 41890813)the Chinese Academy of Sciences(Nos.133244KYSB20180029,131551KYSB20200021,Y4SL021001,QYZDY-SSW-DQC005 and ISEE 2019ZR01)the Laboratory for Marine Mineral Re-sources,Qingdao National Laboratory for Marine Sci-ence and Technology(No.MMRZZ201801).
文摘Recent studies have demonstrated the ability of seismic oceanography to reveal finescale vertical structures of water column in the oceans based on multichannel seismic(MCS)reflection data.Such information can clarify the dynamic processes of mixing,exchange,and translation of water mass and energy.In this study,we present four MCS lines and satellite data to show high-resolution seismic images of shallow waters over the Shatsky Rise in the Northwest Pacific Ocean,where the Kuroshio Exten-sion passes and bifurcates.One of our MCS transects crossed the center of an anticyclonic warm eddy on August 28,2010,confirmed by satellite data such as sea level anomaly(SLA),geostrophic current anomaly(GCA),and sea surface temperature anomaly(SSTa).The seismic image showed that the eddy vertical structure featured a bowl-like shape and onion-like internal layering.The slightly tilted(<0.5°)surface of the eddy was 400m below the sea surface,indicating a subsurface eddy.The eddy was inferred to have a radius of 50 km and a maximum thickness of 500m.Other MCS sections demonstrated the submesoscale structure of oceanfronts,characterized by the dipping reflectors(>2°-3°)at the boundaries between water masses with differing properties.In addition,the discrepancies in SLA,GCA,and SSTa between water masses resulted in different seismic reflectivities.The water masses with high SLA,anticyclonic GCA and positive SSTa featured high-amplitude,continuous,clear-layered,and non-linear reflections,whereas those with low SLA,cyclonic GCA,and negative SSTa were associated with weak,fragmented,less stratification,and more linear reflectors.
基金supported by the National Natural Science Foundation of China (50879085)the Program for New Century Excellent Talents in University(NCET-07-0778)Fundamental Research Funds for the Central Universities (2012QNA4020)
文摘This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and breaking. This numerical model is improved by 1) introducing Wen's frequency spectrum and Mitsuyasu's directional function, which are more suitable to the coastal area of China; 2) considering energy dissipation caused by bottom friction, which ensures more accurate results for large-scale and shallow water areas; 3) taking into account a non-linear dispersion relation. Predictions using the extended wave model are carried out to study the feasibility of constructing the Ai Hua yacht port in Qingdao, China, with a comparison between two port layouts in design. Wave fields inside the port for different incident wave directions, water levels and return periods are simulated, and then two kinds of parameters are calculated to evaluate the wave conditions for the two layouts. Analyses show that Layout I is better than Layout II. Calculation results also show that the harbor will be calm for different wave directions under the design water level. On the contrary, the wave conditions do not wholly meet the requirements of a yacht port for ship berthing under the extreme water level. For safety consideration, the elevation of the breakwater might need to be properly increased to prevent wave overtopping under such water level. The extended numerical simulation model may provide an effective approach to computing wave heights in a harbor.
基金funded by the National Natural Science Foundation of China (NSFC) (No. 41530966)Key Project of the Ministry of Science and Technology of China (No. 2016YFA0600904)
文摘Diversion of the Yellow River is a unique geological event in offshore China,causing changes of the sedimentary environment in eastern China Seas.The last diversion took place in AD 1855,with the estuary diverted from the Yellow Sea into the Bohai Sea.The identification of the river diversion events in the shelf sediments would not only provide the definite ages for the sediments,but also give a clue for better understanding of the sedimentation in that area.In this study,210 Pb,grain size,geochemical element,and foraminiferal data in core H205 from the north Yellow Sea were systematically investigated.A high-resolution sedimentary record was established,which was coupled with the Yellow River diversion and runoff changes.The results show that the foraminiferal composition and foraminiferal abundance of the sediments from the north Yellow Sea had good response to the Yellow River diversion in 1855.Before the change,shallow water assemblages dominated the foraminifera,and the abundance of each foraminiferal species was very low.After the diversion event,the abundance of most foraminifera increased sharply,with a maximum increase of 16 times,and the assemblage was still dominated by shallow water species.Furthermore,the changes in foraminiferal abundance in the core sediments corresponded well with the discharge fluctuation of the Yellow River since 1855.When the Yellow River began entering the Bohai Sea,the Yellow River water,which is rich in nutrients,along with the coastal currents affected the north Yellow Sea,increased the primary productivity in the north Yellow Sea,which is the main reason for the abrupt increase and fluctuation of foraminiferal abundance in this area.At the meantime,the East Asian winter monsoon could also promote the development of nearshore foraminiferal species by enhancing the coastal currents.
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 200905001 and 201005019the Germany-China Cooperation in Marine Science and Technology under contract No.CHN 04/009+4 种基金the State Basic Research Program of China under contract No.2011CB409803the State Key Technology Research and Development Program of China under contract No.2008BAC42B03the Hi-tech Research Development Program of China under Grant No.2007AA09Z117the National Natural Science Foundation of China under contract No.40706018the Scientific Research Fund of the Second Institute of Oceanography,the State Oceanic Administration of China under contract Nos JT1105 and JT0903
文摘A fine resolution model has been applied to get more insight into the effects of a modified runoff due to the Three-Gorges-Dam (TGD) on the East China Sea (ECS).The region of interest was confined to the offshore area in the vicinity of the Changjiang River.To the east,it extended up to the area southwest of Cheju Island.The model was used to evaluate the effect of a modified runoff on the water properties of the adjacent regions like the Changjiang diluted water (CDW) and the Zhoushan Fishing Ground.The sensitivity of the ECS to a modified Changjiang runoff was explored firstly by sensitivity studies and secondly by experiments based on historical runoff records and water management plans of the TGD.These experiments led to the general conclusion that the most affected area by runoff is located close to the Changjiang River mouth.The area of influence has an extension of about 150 km×150 km.In the realistic experiment,the related anomalies reached their maximum value in early summer (May).In normal years the related salinity anomalies can get to as large as 2.
基金supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2021B1515 020098)the Project of Science and Technology Department of Guangxi Zhuang Autonomous Region to Chen J. (No. 2019AC17008)+4 种基金the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (No. GML2019ZD0205)the National Natural Science Foundation of China (No. 41890813)the Chinese Academy of Sciences Project (Nos. 133244KYSB20180029, 131551KYSB20200 021, Y4SL021001, QYZDY-SSW-DQC005, ISEE2021PY03, and E1SL3C02)the Development Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences (No. 202207)the Guangdong Provincial Research and Development Program in Key Areas (No. 2020B1111520001)
文摘In recent years,great earthquakes occurred within the Wharton Basin in the eastern Indian Ocean,and they have been associa-ted with active faulting on the ancient oceanic crust.Large seismogenic faults were thought to be the fault reactivation on the ancient oceanic crust,but these phenomena are still unclear and require examination.This study used high-quality multibeam bathymetry and multichannel seismic data collected over the northern Ninetyeast Ridge to investigate detailed fault geometry,structure,and activity.We recognized 12 large linear active faults by integrating bathymetry maps and multichannel seismic reflection profiles.Our results showed that these faults have high angles,and they all displaced the basement and propagated to the seafloor with distinct fault scarps.They trended NWW-SEE with a spacing of 10–40km and were parallel to each other and the nearby subfault of the 2012 great intraplate earthquake,suggesting similar stress fields.These faults are also in agreement with the orientations of magnetic isochrons,implying their formation by seafloor spreading.Furthermore,regarding the strike-slip focal mechanism of 2012 earthquakes,we proposed that these faults were created early by a normal spreading process and then evolved into a strike-slip pattern since the ancient oceanic crust ap-proached the subduction zones.
基金The Fund of the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0205the National Natural Science Foundation of China under contract Nos 42006055,41704049,41890813,41976066,and 41976064+3 种基金The Fund of the State Key Laboratory of Marine Geology,Tongji University under contract No.MGK202011the Scholarship of China Scholarship Councilthe Program of Chinese Academy of Sciences under contract Nos Y4SL021001,QYZDYSSW-DQC005,131551KYSB20200021,133244KYSB20180029,and ISEE2021PY03the International Conference Communication Fund for Graduate Students,Tongji University.
文摘Seismicity in ocean ridge-transform systems reveals fundamental processes of mid-ocean ridges,while comparisons of seismicity in different oceans remain rare due to a lack of detection of small events.From 1996 to 2003,the Pacific Marine Environmental Laboratory of the National Oceanic and Atmospheric Administration(NOAA/PMEL)deployed several hydrophones in the eastern Pacific Ocean and the northern Atlantic Ocean.These hydrophones recorded earthquakes with small magnitudes,providing us with opportunities to study the seismic characteristics of ridge-transform systems at different spreading rates and make further comparisons of their differences.This study comparatively analyzed hydroacoustic and teleseismic data recorded on the fast-spreading East Pacific Rise(EPR,10°S to 12°N),intermediate-spreading Galapagos Ridge(103°W to 80°W),and slow-spreading Mid-Atlantic Ridge(MAR,15°N to 37°N).We present a systematic study of the spatial and temporal distribution of events,aftershock seismicity,and possible triggering mechanisms of aftershock sequences.Our analysis yields the following conclusions.(1)From the hydroacoustic data,the EPR transform faults had the highest average seismicity rate among the three regions.(2)Along-ridge event distributions show that a high number of earthquakes were concentrated on the EPR,while they became dispersed on the GR and fewer and more scattered on the MAR,reflecting that the different tectonic origins were closely correlated with the spreading rate.(3)Analysis from mainshock-aftershock sequences shows no significant differences in the aftershock decay rate among the three regions.(4)Multiple types of aftershock triggering models were inferred from Coulomb stress changes:strike-slip mainshocks triggered strike-slip aftershocks and normal faulting aftershocks,and normal faulting mainshocks triggered normal faulting aftershocks.Although these results are case studies,they may be applicable to other ocean ridge-transform systems in future investigations.Our results provide important new insights into the seismicity of global ocean ridge-transform systems.
基金the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515020098)the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD 0205)+6 种基金the National Natural Science Foundation of China(Nos.41776058,41890813,42006056,42276222)the Chinese Academy of Sciences Project(Nos.133244KYSB20180029,131551KYSB20200021,Y4SL021001,QYZDYSSW-DQC005,ISEE2021PY03,E1SL3C02)the Development Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences(No.SCSIO202207)Guangdong Provincial Research and Development Program in Key Areas(No.2020B1111520001)the Hainan Provincial Natural Science Foundation of China(No.421QN381)the Science and Technology Program of Guangzhou(No.202201010221)the China Postdoctoral Science Foundation(No.2022M711480)。
文摘The Jurassic oceanic crust is the oldest existing oceanic crust on earth,and although distributed sparsely,carries essential information about the earth's evolution.The area around the Pigafetta Basin in the west Pacific Ocean(also known as the Jurassic Quiet Zone,JQZ)is one of a few areas where the Jurassic oceanic crust is present.This study takes full advantage of high-resolution multichannel seismic reflection profiles in combination with bathymetry,magnetic,and gravity data from the JQZ to examine the structure,deformation,and morphology of the Jurassic oceanic crust.Our results show the following insights:1)The Moho lies at 2–3 s in two-way travel time beneath the seafloor with the segmented feature.The gaps between the Moho segments well correspond to the seamounts on the seafloor,suggesting the upward migration of magma from the mantle has interrupted the pre-existing Moho.2)The oceanic crust is predominantly deformed by crustal-scale thrust faults,normal faults cutting through the top of basement,and vertical seismic disturbance zones in association with migration of thermal fluids.The thrust faults are locally found and interpreted as the results of tectonic inversion.3)Seafloor morphology in the JQZ is characterized by fault scarps,fold scarps,seamounts,and small hills,indicating the occurrence of active faults.4)The oceanic crust in the JQZ and East Pacific Rise has many structural and geometrical variations,such as the thickness of sediments,seafloor topography,basement morphology,fault size and type.
基金The fund from Science,Technology and Innovation Commission of Shenzhen Municipality under contract No.JCYJ20210324105211031the National Natural Science Foundation of China under contract No.41720104001.
文摘Typhoons in the western Pacific have a significant impact on the transport of heat,salt and particles through the Luzon Strait.However,there are very limited field observations of this impact because of extreme difficulties and even dangers for ship-based measurements during the rough weather.Here,we present the preliminary results from analyzing a dataset collected by a glider deployed west of the Luzon Strait a few days prior to the arrival of typhoon MITAG.The gilder data revealed an abnormally salinity(>34.8)subsurface water apparently sourced from Kuroshio intrusion during the typhoon.When typhoon MITAG traveled on the east of the Luzon Strait,the positive wind stress curl strengthened the cyclonic eddy and weakened the anti-cyclonic eddy.This led to a slowdown of Kuroshio and made its intrusion easier.The main axis of the Kuroshio at the northern part of the strait shifted westward after the typhoon and did not return to its original position until a week later.The Ekman transport from persistent northerly wind of typhoon MITAG was significant,but its importance in enhancing the Kuroshio intrusion is only secondary relative to the eddies variations.
基金supported by the National High-Technology Research and Development Program of China(Grant No.2007AA091201-1)
文摘A cabled ocean observatory system that can provide abundant power and broad bandwidth communication for undersea instruments is developed. A 10 kV direct current (kVDC) with up to 10 kW power, along with l Gigabit/sec Ethemet communication, can be transmitted from the shore to the seafloor through an umbilical armored cable. A subsea junction box is fixed at a cable terminal, enabling the extension of up to nine connections. The box consists of three main pressure vessels that perform power conversion, power distribution, and real-time communication functions. A method of stacking modules is used to design the power conversion system in order to reduce the 10 kV voltage to levels that can power the attached instruments. A power distribution system and an Ethemet communication system are introduced to control the power supply and transmit data or commands between the terminals and the shore station, respectively. Specific validations of all sections were qualified in a laboratory environment prior to the sea trial. The ocean observatory system was then deployed at the coast of the East China Sea along with three in situ instruments for a 14-day test. The results show that this high voltage-powered observatory system is effective for subsea long-term and real-time observations.