期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Treatment of Imbalance Dataset for Human Emotion Classification
1
作者 Er. Shrawan Thakur 《World Journal of Neuroscience》 2023年第4期173-191,共19页
Developments in biomedical science, signal processing technologies have led Electroencephalography (EEG) signals to be widely used in the diagnosis of brain disease and in the field of Brain-Computer Interface (BCI). ... Developments in biomedical science, signal processing technologies have led Electroencephalography (EEG) signals to be widely used in the diagnosis of brain disease and in the field of Brain-Computer Interface (BCI). The collected EEG signals are processed using Machine Learning-Random Forest and Naive Bayes- and Deep Learning-Recurrent Neural Network (RNN), Neural Network (NN) and Long Short Term Memory (LSTM)-Algorithms to obtain the recent mood of a person. The Algorithms mentioned above have been imposed on the data set in order to find out what the person is feeling at a particular moment. The following thesis is conducted to find out one of the following moods (happy, surprised, disgust, fear, anger and sadness) of a person at an instant, with an aim to obtain the result with least amount of time delay as the mood differs. It is pretty obvious that the accuracy of the output varies depending upon the algorithm used, time taken to process the data, so that it is easy for us to compare the reliability and dependency of a particular algorithm to another, prior to its practical implementation. The imbalance data sets that were used had an imbalanced class and thus, over fitting occurred. This problem was handled by generating Artificial Data sets with the use of SMOTE Oversampling Technique. 展开更多
关键词 Electroencephalography (EEG) Brain Computer Interface (BCI) Recurrent Neural Network (RNN) Long Short Term Memory (LSTM) Neural Network (NN) Synthetic Minority Over Sampling Technique (SMOTE)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部