The combination of orthogonal frequency division multiple access(OFDMA) with relaying techniques provides plentiful opportunities for high-performance and cost-effective networks.It requires intelligent radio resource...The combination of orthogonal frequency division multiple access(OFDMA) with relaying techniques provides plentiful opportunities for high-performance and cost-effective networks.It requires intelligent radio resource management schemes to harness these opportunities.This paper investigates the utility-based resource allocation problem in a real-time and non-real-time traffics mixed OFDMA cellular relay network to exploit the potentiality of relay.In order to apply utility theory to obtain an efficient tradeoff between throughput and fairness as well as satisfy the delay requirements of real-time traffics,a joint routing and scheduling scheme is proposed to resolve the resource allocation problem.Additionally,a low-complexity iterative algorithm is introduced to realize the scheme.The numerical results indicate that besides meeting the delay requirements of real-time traffic,the scheme can achieve the tradeoff between throughput and fairness effectively.展开更多
MPEG-4 fine-granularity-scalable (FGS) technology is an effective solution to resolve the network bandwidth varying because FGS provides very fine granular SNR scalability. However, this scalability is obtained with...MPEG-4 fine-granularity-scalable (FGS) technology is an effective solution to resolve the network bandwidth varying because FGS provides very fine granular SNR scalability. However, this scalability is obtained with sacrifice of coding efficiency. An one-loop FGS structure is presented based on motion compensation (MC + FGS) to improve the coding efficiency of base FGS. Then it describes and discusses the hybrid spatial-SNR FGS (FGSS) structure that extends SNR scalability of FGS to spatial scalability (spatio-SNR scalability). FGSS structure inherent the low coding efficiency of FGS structure. Combining MC + FGS structure with FGSS structure, a structure of MC + FGSS structure is obtained which acquires both structures' advantages and counteracts both structures' defects. Experimental results prove the MC+ FGSS structure not only obtains fine granular spatio-SNR scalability, but also achieves high coding efficiency.展开更多
基金Sponsored by the Self-Determined Research Funds of Huazhong Normal University from the Colleges’Basic Research and Operation of MOE
文摘The combination of orthogonal frequency division multiple access(OFDMA) with relaying techniques provides plentiful opportunities for high-performance and cost-effective networks.It requires intelligent radio resource management schemes to harness these opportunities.This paper investigates the utility-based resource allocation problem in a real-time and non-real-time traffics mixed OFDMA cellular relay network to exploit the potentiality of relay.In order to apply utility theory to obtain an efficient tradeoff between throughput and fairness as well as satisfy the delay requirements of real-time traffics,a joint routing and scheduling scheme is proposed to resolve the resource allocation problem.Additionally,a low-complexity iterative algorithm is introduced to realize the scheme.The numerical results indicate that besides meeting the delay requirements of real-time traffic,the scheme can achieve the tradeoff between throughput and fairness effectively.
文摘MPEG-4 fine-granularity-scalable (FGS) technology is an effective solution to resolve the network bandwidth varying because FGS provides very fine granular SNR scalability. However, this scalability is obtained with sacrifice of coding efficiency. An one-loop FGS structure is presented based on motion compensation (MC + FGS) to improve the coding efficiency of base FGS. Then it describes and discusses the hybrid spatial-SNR FGS (FGSS) structure that extends SNR scalability of FGS to spatial scalability (spatio-SNR scalability). FGSS structure inherent the low coding efficiency of FGS structure. Combining MC + FGS structure with FGSS structure, a structure of MC + FGSS structure is obtained which acquires both structures' advantages and counteracts both structures' defects. Experimental results prove the MC+ FGSS structure not only obtains fine granular spatio-SNR scalability, but also achieves high coding efficiency.