Data compression plays a key role in optimizing the use of memory storage space and also reducing latency in data transmission. In this paper, we are interested in lossless compression techniques because their perform...Data compression plays a key role in optimizing the use of memory storage space and also reducing latency in data transmission. In this paper, we are interested in lossless compression techniques because their performance is exploited with lossy compression techniques for images and videos generally using a mixed approach. To achieve our intended objective, which is to study the performance of lossless compression methods, we first carried out a literature review, a summary of which enabled us to select the most relevant, namely the following: arithmetic coding, LZW, Tunstall’s algorithm, RLE, BWT, Huffman coding and Shannon-Fano. Secondly, we designed a purposive text dataset with a repeating pattern in order to test the behavior and effectiveness of the selected compression techniques. Thirdly, we designed the compression algorithms and developed the programs (scripts) in Matlab in order to test their performance. Finally, following the tests conducted on relevant data that we constructed according to a deliberate model, the results show that these methods presented in order of performance are very satisfactory:- LZW- Arithmetic coding- Tunstall algorithm- BWT + RLELikewise, it appears that on the one hand, the performance of certain techniques relative to others is strongly linked to the sequencing and/or recurrence of symbols that make up the message, and on the other hand, to the cumulative time of encoding and decoding.展开更多
The development of artificial intelligence (AI), particularly deep learning, has made it possible to accelerate and improve the processing of data collected in different fields (commerce, medicine, surveillance or sec...The development of artificial intelligence (AI), particularly deep learning, has made it possible to accelerate and improve the processing of data collected in different fields (commerce, medicine, surveillance or security, agriculture, etc.). Most related works use open source consistent image databases. This is the case for ImageNet reference data such as coco data, IP102, CIFAR-10, STL-10 and many others with variability representatives. The consistency of its images contributes to the spectacular results observed in its fields with deep learning. The application of deep learning which is making its debut in geology does not, to our knowledge, include a database of microscopic images of thin sections of open source rock minerals. In this paper, we evaluate three optimizers under the AlexNet architecture to check whether our acquired mineral images have object features or patterns that are clear and distinct to be extracted by a neural network. These are thin sections of magmatic rocks (biotite and 2-mica granite, granodiorite, simple granite, dolerite, charnokite and gabbros, etc.) which served as support. We use two hyper-parameters: the number of epochs to perform complete rounds on the entire data set and the “learning rate” to indicate how quickly the weights in the network will be modified during optimization. Using Transfer Learning, the three (3) optimizers all based on the gradient descent methods of Stochastic Momentum Gradient Descent (sgdm), Root Mean Square Propagation (RMSprop) algorithm and Adaptive Estimation of moment (Adam) achieved better performance. The recorded results indicate that the Momentum optimizer achieved the best scores respectively of 96.2% with a learning step set to 10−3 for a fixed choice of 350 epochs during this variation and 96, 7% over 300 epochs for the same value of the learning step. This performance is expected to provide excellent insight into image quality for future studies. Then they participate in the development of an intelligent system for the identification and classification of minerals, seven (7) in total (quartz, biotite, amphibole, plagioclase, feldspar, muscovite, pyroxene) and rocks.展开更多
文摘Data compression plays a key role in optimizing the use of memory storage space and also reducing latency in data transmission. In this paper, we are interested in lossless compression techniques because their performance is exploited with lossy compression techniques for images and videos generally using a mixed approach. To achieve our intended objective, which is to study the performance of lossless compression methods, we first carried out a literature review, a summary of which enabled us to select the most relevant, namely the following: arithmetic coding, LZW, Tunstall’s algorithm, RLE, BWT, Huffman coding and Shannon-Fano. Secondly, we designed a purposive text dataset with a repeating pattern in order to test the behavior and effectiveness of the selected compression techniques. Thirdly, we designed the compression algorithms and developed the programs (scripts) in Matlab in order to test their performance. Finally, following the tests conducted on relevant data that we constructed according to a deliberate model, the results show that these methods presented in order of performance are very satisfactory:- LZW- Arithmetic coding- Tunstall algorithm- BWT + RLELikewise, it appears that on the one hand, the performance of certain techniques relative to others is strongly linked to the sequencing and/or recurrence of symbols that make up the message, and on the other hand, to the cumulative time of encoding and decoding.
文摘The development of artificial intelligence (AI), particularly deep learning, has made it possible to accelerate and improve the processing of data collected in different fields (commerce, medicine, surveillance or security, agriculture, etc.). Most related works use open source consistent image databases. This is the case for ImageNet reference data such as coco data, IP102, CIFAR-10, STL-10 and many others with variability representatives. The consistency of its images contributes to the spectacular results observed in its fields with deep learning. The application of deep learning which is making its debut in geology does not, to our knowledge, include a database of microscopic images of thin sections of open source rock minerals. In this paper, we evaluate three optimizers under the AlexNet architecture to check whether our acquired mineral images have object features or patterns that are clear and distinct to be extracted by a neural network. These are thin sections of magmatic rocks (biotite and 2-mica granite, granodiorite, simple granite, dolerite, charnokite and gabbros, etc.) which served as support. We use two hyper-parameters: the number of epochs to perform complete rounds on the entire data set and the “learning rate” to indicate how quickly the weights in the network will be modified during optimization. Using Transfer Learning, the three (3) optimizers all based on the gradient descent methods of Stochastic Momentum Gradient Descent (sgdm), Root Mean Square Propagation (RMSprop) algorithm and Adaptive Estimation of moment (Adam) achieved better performance. The recorded results indicate that the Momentum optimizer achieved the best scores respectively of 96.2% with a learning step set to 10−3 for a fixed choice of 350 epochs during this variation and 96, 7% over 300 epochs for the same value of the learning step. This performance is expected to provide excellent insight into image quality for future studies. Then they participate in the development of an intelligent system for the identification and classification of minerals, seven (7) in total (quartz, biotite, amphibole, plagioclase, feldspar, muscovite, pyroxene) and rocks.