期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Two stages of subsidence and its formation mechanisms in Mid-Late Triassic Ordos Basin,NW China 被引量:1
1
作者 DENG Xiuqin CHU Meijuan +2 位作者 WANG Long CHEN Xiu WANG Yanxin 《Petroleum Exploration and Development》 SCIE 2024年第3期576-588,共13页
Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two import... Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two important subsidence events during this depositional period.Through contrastive analysis of the two stages of tectonic subsidence,including stratigraphic characteristics,lithology combination,location of catchment area and sedimentary evolution,it is proposed that both of them are responses to the Indosinian Qinling tectonic activity on the edge of the craton basin.The early subsidence occurred in the Chang 10 Member was featured by high amplitude,large debris supply and fast deposition rate,with coarse debris filling and rapid subsidence accompanied by rapid accumulation,resulting in strata thickness increasing from northeast to southwest in wedge-shape.The subsidence center was located in Huanxian–Zhenyuan–Qingyang–Zhengning areas of southwestern basin with the strata thickness of 800–1300 m.The subsidence center deviating from the depocenter developed multiple catchment areas,until then,unified lake basin has not been formed yet.Under the combined action of subsidence and Carnian heavy rainfall event during the deposition period of Chang 7 Member,a large deep-water depression was formed with slow deposition rate,and the subsidence center coincided with the depocenter basically in the Mahuangshan–Huachi–Huangling areas.The deep-water sediments were 120–320 m thick in the subsidence center,characterized by fine grain.There are differences in the mechanism between the two stages of subsidence.The early one was the response to the northward subduction of the MianLüe Ocean and intense depression under compression in Qinling during Mid-Triassic.The later subsidence is controlled by the weak extensional tectonic environment of the post-collision stage during Late Triassic. 展开更多
关键词 Ordos Basin Chang 10 Member Chang 7 Member subsidence center depocenter subsidence mechanism Qinling orogenic belt Indosinian movement
在线阅读 下载PDF
Characteristics and control factors of feldspar dissolution in gravity flow sandstone of Chang 7 Member,Triassic Yanchang Formation,Ordos Basin,NW China 被引量:1
2
作者 ZHU Haihua ZHANG Qiuxia +4 位作者 DONG Guodong SHANG Fei ZHANG Fuyuan ZHAO Xiaoming ZHANG Xi 《Petroleum Exploration and Development》 SCIE 2024年第1期114-126,共13页
To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb... To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly. 展开更多
关键词 gravity flow sandstone differential feldspar dissolution mica-feldspar dissolution experiment Chang 7 Member of Triassic Yanchang Formation Ordos Basin
在线阅读 下载PDF
The Influence of Microbial Community on Oil Reservoirs:A Case Study on the Mesozoic Natural Gas in the Pengyang Area,Southwestern Ordos Basin,China
3
作者 SHANG Ting NIU Xiaobing +7 位作者 LI Mingrui ZHANG Zhongyi HUANG Xuan HAN Tianyou ZHANG Xiaolei LI Jihong CHU Meijuan LIU Xin 《Acta Geologica Sinica(English Edition)》 2025年第1期144-158,共15页
The formation of Mesozoic natural gas in the Pengyang area of southwestern Ordos Basin is discussed,from the perspective of microbial community characteristics,in order to clarify the relationship between the origin o... The formation of Mesozoic natural gas in the Pengyang area of southwestern Ordos Basin is discussed,from the perspective of microbial community characteristics,in order to clarify the relationship between the origin of natural gas and its associated indigenous microbial community.The types and diversity of indigenous microbial communities associated with the oil reservoir were studied by means of collecting reservoir formation water samples from exploration wells.The indigenous microbial communities in the Chang 8 member of the Yanchang Formation were primarily distributed within Proteobacteria and Firmicutes,including the specific species and genera of Methylobacter,Pseudomonas,Haibacter,Toxobacillus,Acinetobacter and Adura actinomyces.The results of diversity analysis shows that the number of common genes was 5448,while the number of unique genes and information was less.This reflects the fact that the strata in the study area are relatively closed and not invaded by external water sources,which leads to the development of biological community diversity.In conjunction with the analysis of geochemical characteristics of oil and gas reservoirs in this area,this indicates that the study area possesses the necessary geological conditions for microbial degradation.It is the first time that the species and diversity of the indigenous microbial community in the Ordos Basin have been analyzed,showing that microbial degradation is the main cause of natural gas formation here,changes the characteristics of crude oil in this area and provides first-hand information on the impact of indigenous microorganisms on the reservoir. 展开更多
关键词 microbial community source of natural gas Yanchang Formation Pengyang area Ordos Basin
在线阅读 下载PDF
Factors Controlling Hydrocarbon Accumulation in Jurassic Reservoirs in the Southwest Ordos Basin, NW China 被引量:8
4
作者 LIU Xin WANG Feng +5 位作者 LIU Baojun TIAN Jingchun SHANG Ting MA Jiong ZHANG Zhongyi ZHANG Xiaolei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第2期467-484,共18页
The sedimentary, paleogeomorphological and reservoir characteristics of the Jurassic Yan’an Formation in the southwestern Ordos Basin, northwestern China, were studied by means of casting thin sections, scanning elec... The sedimentary, paleogeomorphological and reservoir characteristics of the Jurassic Yan’an Formation in the southwestern Ordos Basin, northwestern China, were studied by means of casting thin sections, scanning electron microscopy, inclusion analysis and identification of low-amplitude structures. A model for reservoir formation is established, and the controlling effects of sedimentary facies, paleotopography, low-amplitude structures and formation water on oil reservoirs are revealed. There are significant differences in the sedimentary characteristics, structural morphology and paleowater characteristics between the reservoirs above the Yan 10 Member and those in the Yan 9 to Yan 7 Members. The Yan 10 Member contains fluvial sediments, whereas the Yan 9 to Yan 7 members contain delta-plain anastomosing-river deposits. The distribution of high-permeability reservoir is controlled by pre-Jurassic paleogeomorphology and sedimentary facies. Some of these facies exhibit high porosity and high permeability in a lowpermeability background. The main hydrocarbon accumulation period was the late Early Cretaceous, filling was continuous, and the charging strength altered from weak to strong and then from strong to weak. The Yan 10 reservoir is mainly controlled by the paleogeomorphology: hydrocarbons migrated upward at a high speed through the unconformity surface, and accumulated in the favorable traps formed by paleogeomorphic structural units, such as gentle slopes or channel island. Furthermore, groundwater alternation in these areas was relatively stagnant, providing good reservoir preservation conditions. The reservoirs in the Yan 9 and higher members are controlled by the sedimentary facies, lowamplitude structure and paleowater characteristics. Hydrocarbons migrated through the three-dimensional delivery system, influenced by favorable sedimentary facies and high-salinity groundwater, then accumulated in the favorable low-amplitude structural traps that formed during the hydrocarbon production period. 展开更多
关键词 inclusion analysis LOW-AMPLITUDE structure hydrocarbon accumulation JURASSIC Yan'an Formation SOUTHWESTERN ORDOS BASIN
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部