期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation of Blood Flow Dynamics in a Stenosed Artery Enhanced by Copper and Alumina Nanoparticles
1
作者 Haris Alam Zuberi Madan Lal +2 位作者 Amol Singh Nurul Amira Zainal Ali J.Chamkha 《Computer Modeling in Engineering & Sciences》 2025年第2期1839-1864,共26页
Nanotechnology holds immense importance in the biomedical field due to its ability to revolutionize healthcare on a molecular scale.Motivated by the imperative of enhancing patient outcomes,a comprehensive numerical s... Nanotechnology holds immense importance in the biomedical field due to its ability to revolutionize healthcare on a molecular scale.Motivated by the imperative of enhancing patient outcomes,a comprehensive numerical simulation study on the dynamics of blood flow in a stenosed artery,focusing on the effects of copper and alumina nanoparticles,is conducted.The study employs a 2-dimensional Newtonian blood flow model infused with copper and alumina nanoparticles,considering the influence of a magnetic field,thermal radiation,and various flow parameters.The governing differential equations are first non-dimensionalized to facilitate analysis and subsequently solved using the 4th order collocation method,bvp4c module in MATLAB.This approach obtains velocity and temperature profiles,revealing the impact of relevant parameters crucial in the biomedical field.The findings of this study underscore the significance of understanding blood flow dynamics in stenosed arteries and the potential benefits of utilizing copper and alumina nanoparticles in treatment strategies.The incorporation of nanoparticles introduces novel avenues for enhancing therapeutic interventions,particularly in mitigating the effects of stenosis.The elucidation of velocity and temperature profiles provides valuable insights into the behavior of blood flow under different conditions,thereby informing the development of targeted biomedical applications.The arterial curvature flow parameter influences temperature profiles,with increased parameters promoting more efficient heat dissipation.The elevated values of Prandtl number and thermal radiation parameter showcase the diminished temperature profiles,indicating stronger dominance of momentum diffusion over thermal diffusion and radiative heat transfer mechanism.Sensitivity analysis of the pertinent physical parameters reveals that the Prandtl number has the most significant impact on blood flow dynamics.A statistical analysis of the present results and existing literature has also been included in the study.Overall,this research contributes to advancing our understanding of vascular health and lays the groundwork for innovative approaches in stenosis treatment and related biomedical fields. 展开更多
关键词 Blood flow simulation STENOSIS copper and alumina nanoparticles thermal radiation curvature parameter
在线阅读 下载PDF
Computational Investigation of Brownian Motion and Thermophoresis Effect on Blood-Based Casson Nanofluid on a Non-linearly Stretching Sheet with Ohmic and Viscous Dissipation Effects
2
作者 Haris Alam Zuberi Madan Lal +1 位作者 Shivangi Verma Nurul Amira Zainal 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1137-1163,共27页
Motivated by the widespread applications of nanofluids,a nanofluid model is proposed which focuses on uniform magnetohydrodynamic(MHD)boundary layer flow over a non-linear stretching sheet,incorporating the Casson mod... Motivated by the widespread applications of nanofluids,a nanofluid model is proposed which focuses on uniform magnetohydrodynamic(MHD)boundary layer flow over a non-linear stretching sheet,incorporating the Casson model for blood-based nanofluid while accounting for viscous and Ohmic dissipation effects under the cases of Constant Surface Temperature(CST)and Prescribed Surface Temperature(PST).The study employs a two-phase model for the nanofluid,coupled with thermophoresis and Brownian motion,to analyze the effects of key fluid parameters such as thermophoresis,Brownian motion,slip velocity,Schmidt number,Eckert number,magnetic parameter,and non-linear stretching parameter on the velocity,concentration,and temperature profiles of the nanofluid.The proposed model is novel as it simultaneously considers the impact of thermophoresis and Brownian motion,along with Ohmic and viscous dissipation effects,in both CST and PST scenarios for blood-based Casson nanofluid.The numerical technique built into MATLAB’s bvp4c module is utilized to solve the governing system of coupled differential equations,revealing that the concentration of nanoparticles decreases with increasing thermophoresis and Brownian motion parameters while the temperature of the nanofluid increases.Additionally,a higher Eckert number is found to reduce the nanofluid temperature.A comparative analysis between CST and PST scenarios is also undertaken,which highlights the significant influence of these factors on the fluid’s characteristics.The findings have potential applications in biomedical processes to enhance fluid velocity and heat transfer rates,ultimately improving patient outcomes. 展开更多
关键词 Brownian motion boundary layer flow THERMOPHORESIS bvp4c module viscous dissipation ohmic dissipation partial slip
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部