To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to char...To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to characterize the changes in the physical and mechanical properties of fissured sandstone caused by freeze‒thaw cycles.The crack evolution and crack change process on the surface of the fissured sandstone were recorded and analysed in detail via digital image technology(DIC).Numerical simulation was used to reveal the expansion process and damage mode of fine-scale cracks under the action of freeze‒thaw cycles,and the simulation results were compared and analysed with the experimental data to verify the reliability of the numerical model.The results show that the mass loss,porosity,peak stress and elastic modulus all increase with increasing number of freeze‒thaw cycles.With an increase in the number of freeze‒thaw cycles,a substantial change in displacement occurs around the prefabricated cracks,and a stress concentration appears at the crack tip.As new cracks continue to sprout at the tips of the prefabricated cracks until the microcracks gradually penetrate into the main cracks,the displacement cloud becomes obviously discontinuous,and the contours of the displacement field in the crack fracture damage area simply intersect with the prefabricated cracks to form an obvious fracture.The damage patterns of the fractured sandstone after freeze‒thaw cycles clearly differ,forming a symmetrical"L"-shaped damage pattern at zero freeze‒thaw cycles,a symmetrical"V"-shaped damage pattern at 10 freeze‒thaw cycles,and a"V"-shaped damage pattern at 20 freeze‒thaw cycles.After 20 freeze‒thaw cycles,a"V"-shaped destruction pattern and"L"-shaped destruction pattern are formed;after 30 freeze‒thaw cycles,an"N"-shaped destruction pattern is formed.This shows that the failure mode of fractured sandstone gradually becomes more complicated with an increasing number of freeze‒thaw cycles.The effects of freeze‒thaw cycles on the direction and rate of crack propagation are revealed through a temperature‒load coupled model,which provides an important reference for an in-depth understanding of the freeze‒thaw failure mechanisms of fractured rock masses.展开更多
Users of the digital image correlation method are faced with the problem of poor operability,low repeatability,and lack of standardized specifications for spraying speckles.To solve the problem,the research proposed a...Users of the digital image correlation method are faced with the problem of poor operability,low repeatability,and lack of standardized specifications for spraying speckles.To solve the problem,the research proposed a rock deformation measurement method that obviates the need to spray speckles.A local binary model was established by using the local binary pattern(LBP)operator based on deep texture features on rock surfaces.The resulting LBP digital speckle pattern can substitute artificial speckle patterns and demonstrates high quality and strong applicability.Based on the LBP digital speckle pattern,the target tracking algorithm was employed to achieve non-contact measurement of the dynamic displacements of rocks.The feasibility and effectiveness of the algorithm in practical application were verified by conducting shear tests on granite and siltstone.Test results show that the deformation characteristics in the displacement nephograms are in line with the measured data pertaining to rock fracturing and conform to the basic characteristics of the shear failure of rocks.The deformation measurement method based on surface texture information can realize non-contact displacement measurement of rocks under conditions without speckles:this obviates the influence of the quality of sprayed speckles on the accuracy of the measurement of deformation.展开更多
基金supported by the National Natural Science Foundation of China(Project No.52074123).
文摘To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to characterize the changes in the physical and mechanical properties of fissured sandstone caused by freeze‒thaw cycles.The crack evolution and crack change process on the surface of the fissured sandstone were recorded and analysed in detail via digital image technology(DIC).Numerical simulation was used to reveal the expansion process and damage mode of fine-scale cracks under the action of freeze‒thaw cycles,and the simulation results were compared and analysed with the experimental data to verify the reliability of the numerical model.The results show that the mass loss,porosity,peak stress and elastic modulus all increase with increasing number of freeze‒thaw cycles.With an increase in the number of freeze‒thaw cycles,a substantial change in displacement occurs around the prefabricated cracks,and a stress concentration appears at the crack tip.As new cracks continue to sprout at the tips of the prefabricated cracks until the microcracks gradually penetrate into the main cracks,the displacement cloud becomes obviously discontinuous,and the contours of the displacement field in the crack fracture damage area simply intersect with the prefabricated cracks to form an obvious fracture.The damage patterns of the fractured sandstone after freeze‒thaw cycles clearly differ,forming a symmetrical"L"-shaped damage pattern at zero freeze‒thaw cycles,a symmetrical"V"-shaped damage pattern at 10 freeze‒thaw cycles,and a"V"-shaped damage pattern at 20 freeze‒thaw cycles.After 20 freeze‒thaw cycles,a"V"-shaped destruction pattern and"L"-shaped destruction pattern are formed;after 30 freeze‒thaw cycles,an"N"-shaped destruction pattern is formed.This shows that the failure mode of fractured sandstone gradually becomes more complicated with an increasing number of freeze‒thaw cycles.The effects of freeze‒thaw cycles on the direction and rate of crack propagation are revealed through a temperature‒load coupled model,which provides an important reference for an in-depth understanding of the freeze‒thaw failure mechanisms of fractured rock masses.
基金supported by the National Natural Science Foundation of China(No.52074123)the Natural Science Foundation of Hebei Province(Nos.E2022209143,E2021209148 and E2021209052).
文摘Users of the digital image correlation method are faced with the problem of poor operability,low repeatability,and lack of standardized specifications for spraying speckles.To solve the problem,the research proposed a rock deformation measurement method that obviates the need to spray speckles.A local binary model was established by using the local binary pattern(LBP)operator based on deep texture features on rock surfaces.The resulting LBP digital speckle pattern can substitute artificial speckle patterns and demonstrates high quality and strong applicability.Based on the LBP digital speckle pattern,the target tracking algorithm was employed to achieve non-contact measurement of the dynamic displacements of rocks.The feasibility and effectiveness of the algorithm in practical application were verified by conducting shear tests on granite and siltstone.Test results show that the deformation characteristics in the displacement nephograms are in line with the measured data pertaining to rock fracturing and conform to the basic characteristics of the shear failure of rocks.The deformation measurement method based on surface texture information can realize non-contact displacement measurement of rocks under conditions without speckles:this obviates the influence of the quality of sprayed speckles on the accuracy of the measurement of deformation.