This paper presents three strategies for modeling the regional empirical Tm (the weighted mean tem- perature of the atmosphere) to obtain more accurate determinations in a regional empirical model that is better ada...This paper presents three strategies for modeling the regional empirical Tm (the weighted mean tem- perature of the atmosphere) to obtain more accurate determinations in a regional empirical model that is better adapted to the geographical and climatic characteristics of the applied area. The proposed models utilize data from four radiosonde stations in Guangxi, at Nanning, Guilin, Wuzhou and Baise, over an 11 month period (from Jan. to Nov. of 2011 ). The experimental results demonstrated the following: (1) there is no significant展开更多
In this paper, the model of the online real-time information transmission network, such as wechat, micro-blog, and QQ network, is proposed and built, based on the connection properties between users of the online real...In this paper, the model of the online real-time information transmission network, such as wechat, micro-blog, and QQ network, is proposed and built, based on the connection properties between users of the online real-time information transmission network, and combined with the local world evolving characteristics in complex network, then the statistical topological properties of the network is obtained by numerical simulation. Furthermore, we simulated the process of information transmission on the network, according to the actual characteristics of the online real-time information transmission. Statistics show that the degree distribution presents the characteristics of scale free network, presenting power law distribution, while the average path length, the average clustering coefficient and the average size of the network also has a power-law relationship, moreover, the model parameters has no effect on power-law exponent. The spread of information on the network represents obvious fluctuation scaling, reflecting the characteristics that information transmission fluctuates over time.展开更多
The estimation of Precipitable Water Vapor (PWV) derived from Global Positioning System (GPS) data at the IGS site WUHN is assessed by comparing with PWV obtained from radiosonde data (No.57494) in Wuhan. The ap...The estimation of Precipitable Water Vapor (PWV) derived from Global Positioning System (GPS) data at the IGS site WUHN is assessed by comparing with PWV obtained from radiosonde data (No.57494) in Wuhan. The applicability of Saastamoinen (SAAS), Hopfield and Black models used for estimating Zenith Hydrostatic Delay (ZHD) and Zenith Wet Delay (ZWD) and different models is verified in the estimation of GPS-derived PWV for the applied area. The experimental results demonstrated that : 1 ) the precision of PWV estimated from Black model used for calculating ZHD ( ZHDs ) is lower than that of SAAS ( ZHDsAAs ) model and Hopfield model (ZHDn) with the RMS of 4. 16 ram; 2) the RMS of PWV estimated from SAAS model used for calculating ZWD (SAAS) is 3.78 ram; 3 ) the well-known Bevis model gives similar accuracy compared with the site-specific models for Tm in terms of surface temperature ( Ts ) and surface pressure (Ps), which can reach the accuracy inside 1 mm in the GPS-derived PWV estimates.展开更多
Soil organic carbon(SOC)and total nitrogen(TN)stocks are usually calculated with samples collected using core samplers.Although the calculation considers the effects of gravel in soil samples,other coarse fragments su...Soil organic carbon(SOC)and total nitrogen(TN)stocks are usually calculated with samples collected using core samplers.Although the calculation considers the effects of gravel in soil samples,other coarse fragments such as stones or boulders in soil may not be collected due to the restricted diameter of core samplers.This would cause an incorrect estimation of soil bulk density and ultimately SOC and TN stocks.In this study,we compared the relative volume of coarse fragment and bulk density of fine earth determined by large size soil sampler with three core samplers.We also investigated the uncertainties in estimation of SOC and TN stocks caused by this soil sampler procedure in three typical alpine grasslands on the northeast edge of the Qinghai-Tibetan Plateau(QTP),China.Results show that(1)the relative volume and size of coarse fragment collected by large size sampler were significantly(p<0.05)higher and larger than those of core samplers,while bulk density of fine earth,SOC and TN stocks show opposite patterns in all grassland types;(2)SOC and TN stocks determined by core samplers were 17%-45%and 18%-46%higher than larger size sampler for three typical alpine grasslands;and(3)bulk density of fine earth,SOC and TN stocks exponentially decreased with the increasing of coarse fragment content.We concluded that core sampler methods significantly underestimated the volume occupied by coarse fragment but overestimated SOC and TN stocks.Thus,corrections should be made to the results from core samplers using large size samplers on regions with gravel and stone-rich soils in future studies.展开更多
The potential of monitoring the movement of typhoons using the precipitable water vapor(PWV) has been confirmed. However, monitoring the movement of typhoon is focused on PWV, making it difficult to describe the movem...The potential of monitoring the movement of typhoons using the precipitable water vapor(PWV) has been confirmed. However, monitoring the movement of typhoon is focused on PWV, making it difficult to describe the movement of a typhoon in detail minutely and resulting in insufficient accuracy. Hence,based on PWV and meteorological data, we propose an improved typhoon monitoring mode. First, the European Centre for Medium-Range Weather Forecasts Reanalysis 5-derived PWV(ERA5-PWV) and the Global Navigation Satellite System-derived PWV(GNSS-PWV) were compared with the reference radiosonde PWV(RS-PWV). Then, using the PWV and atmospheric parameters derived from ERA5, we discussed the anomalous variations of PWV, pressure(P), precipitation, and wind speed during different typhoons. Finally, we compiled a list of critical factors related to typhoon movement, PWV and P. We developed an improved multi-factor typhoon monitoring mode(IMTM) with different models(i.e.,IMTM-I and IMTM-II) in different cases with a higher density of GNSS observation or only Numerical Weather Prediction(NWP) data. The IMTM was evaluated through the reference movement speeds of HATO and Mangkhut from the China Meteorological Observatory Typhoon Network(CMOTN). The results show that the root mean square(RMS) of the IMTM-I is 1.26 km/h based on ERA5-P and ERA5-PWV,and the absolute bias values are mostly within 2 km/h. Compared with the models considering the single factor ERA5-P/ERA5-PWV, the RMS of the IMTM-I is improved by 26.3% and 38.5%, respectively. The IMTM-II model manifests a residual of only 0.35 km/h. Compared with the single-factor model based on GNSS-PWV/P, the residual of the IMTM-II model is reduced by 90.8% and 84.1%, respectively. These results propose that the typhoon movement monitoring approach combining PWV and P has evident advantages over the single-factor model and is expected to supplement traditional typhoon monitoring.展开更多
The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pu...The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pursuit of rich details not only adds complexity to entity models but also poses significant computational challenges for model visualization and 3D GIS.This paper introduces a novel method for deriving multi-LOD models,which can enhance the efficiency of spatial computing in complex 3D building models.Firstly,we extract multiple facades from a 3D building model(LoD3)and convert them into individual semantic facade models.Through the utilization of the developed facade layout graph,each semantic facade model is then transformed into a parametric model.Furthermore,we explore the specification of geometric and semantic details in building facades and define three different LODs for facades,offering a unique expression.Finally,an innovative heuristic method is introduced to simplify the parameterized facade.Through rigorous experimentation and evaluation,the effectiveness of the proposed parameterization methodology in capturing complex geometric details,semantic richness,and topological relationships of 3D building models is demonstrated.展开更多
The Zenith Hydrostatic Delay(ZHD)is essential for high-precision Global Navigation Satellite System(GNSS)and Very Long Baseline Interferometry(VLBI)data processing.Accurate estimation of ZHD relies on in situ atmosphe...The Zenith Hydrostatic Delay(ZHD)is essential for high-precision Global Navigation Satellite System(GNSS)and Very Long Baseline Interferometry(VLBI)data processing.Accurate estimation of ZHD relies on in situ atmospheric pressure,which is primarily variable in the vertical direction.Current atmospheric pressure is either site-specific or has limited spatial coverage,necessitating vertical corrections for broader applicability.This study introduces a model that uses a Gaussian function for the vertical correction of atmospheric pressure when in situ meteorological observations are unavailable.Validation with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis(ERA5)reveals an average Bias and RMS for the new model of 0.31 h Pa and 2.96 h Pa,respectively.This corresponds to improvements of 37.5%and 80.3%in terms of RMS compared to two commonly used models(T0and Tvmodels)that require in situ meteorological observations,respectively.Additional validation with radiosonde data shows an average Bias and RMS of 1.85 h Pa and 4.87 h Pa,corresponding to the improvement of 42.8%and 71.1%in RMS compared with T0and Tv models,respectively.These accuracies are sufficient for calculating ZHD to an accuracy of 1 mm by performing atmospheric pressure vertical correction.The new model can correct atmospheric pressure from meteorological stations or numerical weather forecasts to different heights of the troposphere.展开更多
Time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) changes over the Pearl River Basin (PRB) for the period 200...Time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) changes over the Pearl River Basin (PRB) for the period 2003-Nov. 2014. TWS estimates from GRACE generally show good agreement with those from two hydrological models GLDAS and WGHM. But they show different capability of detecting significant TWS changes over the PRB. Among them, WGHM is likely to underestimate the seasonal variability of TWS, while GRACE detects long- term water depletions over the upper PRB as was done by hydrological models, and observes significant water increases around the Longtan Reservoir (LTR) due to water impoundment. The heavy drought in 2011 caused by the persistent precipitation deficit has resulted in extreme low surface runoff and water level of the LTR. Moreover, large variability of summer and autumn precipitation may easily trigger floods and droughts in the rainy season in the PRB, especially for summer, as a high correlation of 0.89 was found between precipitation and surface runoff. Generally, the PRB TWS was negatively correlated with El Nifio-Southern Oscillation (ENSO) events. However, the modulation of the Pacific Decadal Oscillation (PDO) may impact this relationship, and the significant TWS anomaly was likely to occur in the peak of PDO phase as they agree well in both of the magnitude and timing of peaks. This indicates that GRACE-based TWS could be a valuable parameter for studying climatic in- fluences in the PRB.展开更多
Estimation of the zero-height geopotential value W_0^(LVD) for the CVD(China Vertical Datum) plays a fundamental role in the connection of traditional height reference systems into a global height system.Estimatio...Estimation of the zero-height geopotential value W_0^(LVD) for the CVD(China Vertical Datum) plays a fundamental role in the connection of traditional height reference systems into a global height system.Estimation the W_0^(LVD) of China is based on the computation of the mean geopotential offset between the value W_0= 62636856.0 m^2 s^(-2), selected as reference in this study, and the unknown geopotential value W_0^(LVD). This estimation is based on the combination of ellipsoidal heights, levelled heights(referring to the CVD), and some physical parameters, such as geopotential values, gravity values, and geoid undulations.The geoid undulations derived from the GGM(Global Geopotential Models). This combination is performed through three approaches: The first one is based on the theory of Molodensky, and the second one compares levelled heights and geopotential values derived from the GGMs, while the third one analyses the differences between GPS/Levelling and GGMs geoid undulations. The approaches are evaluated at 65 benchmarks(BMs) covered around Qingdao where the tide gauge is used to observe the local mean sea level of China. The results from three approaches are very similar. Furthermore, the W_0^(LVD)determined for the China local vertical datum was 62636852.9462 m^2 s^(-2), indicates a bias of about3.0538 m^2/s^(-2) compared to the conventional value of 62636856.0 m^2 s^(-2).展开更多
The development of remote frequency transfer techniques,especially the appearance of optical clocks with unprecedented stability,has prompted geoscientists to study their applications in geodesy.Using remote frequency...The development of remote frequency transfer techniques,especially the appearance of optical clocks with unprecedented stability,has prompted geoscientists to study their applications in geodesy.Using remote frequency transfer technique,by frequency comparison of two optical clocks at two points P and Q connected by optical fibers,one can measure the signal’s frequency shift between them,and the geopotential difference between them can be determined based on the gravity frequency shift equation.Given the orthometric height of P,the orthometric height of Q can be determined.Since the present stability of the optical clock has achieved 1×10^(-18) or better and comparing the frequency transfer via optical fiber provides stability at 10^(-19) level,the optical clock network enables determining the orthometric height at centimeter-level.This study provides a formulation to determine the height diffe rence at one-centimeter level between two points on the ground based on the optical fiber frequency transfer technique.展开更多
We used a questionnaire to obtain data about 664 university students’ amative behavior in a campus. Then we studied dissemination rules of university students’ amative behavior on campus social network. We found the...We used a questionnaire to obtain data about 664 university students’ amative behavior in a campus. Then we studied dissemination rules of university students’ amative behavior on campus social network. We found the amative behavior changes over time by focusing on the analysis of love group’s influence to single people and single group’s affected degree. Meanwhile, we compared the influence of single and multiple social relationships to the spread of amative behavior, and the result shows diversity of social relationships is a significant effect factor in spreading process.展开更多
Tropospheric delay is a primary error source in earth observations and a variety of radio navigation technologies. In this paper, the relationship between zenith tropospheric delays and the elevation and longitude of ...Tropospheric delay is a primary error source in earth observations and a variety of radio navigation technologies. In this paper, the relationship between zenith tropospheric delays and the elevation and longitude of stations is analyzed using the zenith tropospheric delay final products of International GNSS Service (IGS) stations from 2011. Two new models are proposed for estimating zenith tropospheric delays from regional CORS data without meteorological data. The proposed models are compared with the direct interpolation method and the remove-restore method using data from Guangxi CORS. The results show that the new models significantly improve the calculated precision. Finally, the root mean square (RMS) errors of the new models were used to estimate the surface precipitable water vapor (PWV) value at CORS station, which was determined to be less than 2 mm.展开更多
Obtaining high-precision,long-term sequences of vegetation water content(VWC)is of great significance for assessing surface vegetation growth,soil moisture,and fire risk.In recent years,the global navigation satellite...Obtaining high-precision,long-term sequences of vegetation water content(VWC)is of great significance for assessing surface vegetation growth,soil moisture,and fire risk.In recent years,the global navigation satellite system-interferometric reflection(GNSS-IR)has become a new type of remote sensing technology with low cost,all-weather capability,and a high temporal resolution.It has been widely used in the fields of snow depth,sea level,soil moisture content,and vegetation water content.The normalized microwave reflectance index(NMRI)based on GNSS-IR technology has been proven to be effective in monitoring changes in VWC.This paper considers the advantages and disadvantages of remote sensing technology and GNSS-IR technology in estimating VWC.A point-surface fusion method of GNSS-IR and MODIS data based on the GA-BP neural network is proposed to improve the accuracy of VWC estimation.The vegetation index products(NDVI,GPP,LAI)and the NMRI that unified the temporal and spatial resolution were used as the input and output data of the training model,and the GA-BP neural network was used for training and modeling.Finally,a spatially continuous NMRI product was generated.Taking a particular area of the United States as a research object,experiments show that(1)a neural network can realize the effective fusion of GNSS-IR and MODIS products.By comparing the GA-BP neural network,BP neural network,and multiple linear regression(MLR),the three models fusion effect.The results show that the GA-BP neural network has the best modeling effect,and the r and RMSE between the model estimation result and the reference value are 0.778 and 0.0332,respectively;this network is followed by the BP neural network,in which the r and RMSE are 0.746 and 0.0465,respectively.MLR has the poorest effect,with r and RMSE values of 0.500 and 0.0516,respectively.(2)The spatiotem-poral variation in the 16 days/500 m resolution NMRI product obtained by GA-BP neural network fusion is consistent with that in the experimental area.Through the testing of GNSS stations that did not participate in the modeling,the r between the estimated value of the NMRI and the reference value is greater than 0.87,and the RMSE is less than 0.049.Therefore,the method proposed in this paper is optional and effective.The spatially continuous NMRI products obtained by fusion can reflect the changes in VWC in the experimental area more intuitively.展开更多
Poverty alleviation is one of the greatest challenges faced by low-income and middle-income countries.China,which had the largest rural poverty-stricken population,has made tremendous efforts in alleviating poverty es...Poverty alleviation is one of the greatest challenges faced by low-income and middle-income countries.China,which had the largest rural poverty-stricken population,has made tremendous efforts in alleviating poverty especially since the implementation of the targeted poverty alleviation(TPA)policy in 2014,and by 2020,all national poverty-stricken counties(NPCs)have been out of poverty.This study combines deep learning with multiple satellite datasets to estimate county-level economic develop-ment from 2008 to 2019 and assess the effect of the TPA policy for 592 national poverty-stricken counties(NPCs)at country,provincial and county levels.Per capita gross domestic product(GDP)is used to measure the affluence level.From 2014 through 2019,the 592 NPCs experience an average growth rate of per capita GDP at 7.6%±0.4%,higher than the average growth rate of 310 adjacent non-NPC counties(7.3%±0.4%)and of the whole country(6.3%).We also reveal 42 counties with weak growth recently and that the average affluence level of the NPCs in 2019 is still much lower than the national or provincial averages.The inexpensive,timely and accurate method proposed here can be applied to other low-income and middle-income countries for affluence assessment.展开更多
In this paper, a new topological approach for studying an integer sequence constructed from Logistic mapping is proposed. By evenly segmenting [0,1]?into N non-overlapping subintervals which is marked as , representin...In this paper, a new topological approach for studying an integer sequence constructed from Logistic mapping is proposed. By evenly segmenting [0,1]?into N non-overlapping subintervals which is marked as , representing the nodes identities, a network is constructed for analysis. Wherein the undirected edges symbolize their relation of adjacency in an integer sequence obtained from the Logistic mapping and the top integral function. By observation, we find that nodes’ degree changes with different values of??instead of the initial value—X0, and the degree distribution presents the characteristics of scale free network, presenting power law distribution. The results presented in this paper provide some insight into degree distribution of the network constructed from integer sequence that may help better understanding of the nature of Logistic mapping.展开更多
Precipitable Water Vapor(PWV),as an important indicator of atmospheric water vapor,can be derived from Global Navigation Satellite System(GNSS)observations with the advantages of high precision and all-weather capacit...Precipitable Water Vapor(PWV),as an important indicator of atmospheric water vapor,can be derived from Global Navigation Satellite System(GNSS)observations with the advantages of high precision and all-weather capacity.GNSS-derived PWV with a high spatiotemporal resolution has become an important source of observations in mete-orology,particularly for severe weather conditions,for water vapor is not well sampled in the current meteorological observing systems.In this study,an empirical atmospheric weighted mean temperature(Tm)model for Guilin is estab-lished using the radiosonde data from 2012 to 2017.Then,the observations at 11 GNSS stations in Guilin are used to investigate the spatiotemporal features of GNSS-derived PWV under the heavy rainfalls from June to July 2017.The results show that the new Tm model in Guilin has better performance with the mean bias and Root Mean Square(RMS)of−0.51 and 2.12 K,respectively,compared with other widely used models.Moreover,the GNSS PWV estimates are validated with the data at Guilin radiosonde station.Good agreements are found between GNSS-derived PWV and radiosonde-derived PWV with the mean bias and RMS of−0.9 and 3.53 mm,respectively.Finally,an investigation on the spatiotemporal characteristics of GNSS PWV during heavy rainfalls in Guilin is performed.It is shown that variations of PWV retrieved from GNSS have a direct relationship with the in situ rainfall measurements,and the PWV increases sharply before the arrival of a heavy rainfall and decreases to a stable state after the cease of the rainfall.It also reveals the moisture variation in several regions of Guilin during a heavy rainfall,which is significant for the moni-toring of rainfalls and weather forecast.展开更多
A new strategy to realize precise absolute positioning for a single-frequency user is presented. In the presented strategy, the receiver clock and ambiguities are removed using the satelliteand epoch-differenced (SDED...A new strategy to realize precise absolute positioning for a single-frequency user is presented. In the presented strategy, the receiver clock and ambiguities are removed using the satelliteand epoch-differenced (SDED) algorithm. As a further development of the SDED algorithm, a regional augmentation network is used to generate the SDED atmospheric delays at the user. The weakened mathematic property due to the epoch-differenced operation is improved by adding the generated atmospheric delays and applying the robust estimation. To test the new approach, the 24-h data at 5 Continuous Operation Reference Station (CORS) stations in Shanghai is processed. The results show a more than 96% success rate, defined as the case where three directions achieve the desired positioning accuracy of 10 cm, when the observation is longer than 20 min. The 20-min static results show that the new method can reach an accuracy of 3.42, 4.76 and 9.26 cm in the North, East and Up directions, respectively. An experiment was carried out to assess the kinematic positioning. The results show that the kinematic positioning accuracy is 4.11, 5.31 and 4.05 cm in the north-south, east-west and height directions,respectively.展开更多
基金supported by the National Natural Foundation of China(4106400141071294)+1 种基金the Natural Science Foundation of Guangxi(2012GXNSFAA053183)Guangxi Key Laboratory of Spatial Information and Geomatics(1103108-06)
文摘This paper presents three strategies for modeling the regional empirical Tm (the weighted mean tem- perature of the atmosphere) to obtain more accurate determinations in a regional empirical model that is better adapted to the geographical and climatic characteristics of the applied area. The proposed models utilize data from four radiosonde stations in Guangxi, at Nanning, Guilin, Wuzhou and Baise, over an 11 month period (from Jan. to Nov. of 2011 ). The experimental results demonstrated the following: (1) there is no significant
文摘In this paper, the model of the online real-time information transmission network, such as wechat, micro-blog, and QQ network, is proposed and built, based on the connection properties between users of the online real-time information transmission network, and combined with the local world evolving characteristics in complex network, then the statistical topological properties of the network is obtained by numerical simulation. Furthermore, we simulated the process of information transmission on the network, according to the actual characteristics of the online real-time information transmission. Statistics show that the degree distribution presents the characteristics of scale free network, presenting power law distribution, while the average path length, the average clustering coefficient and the average size of the network also has a power-law relationship, moreover, the model parameters has no effect on power-law exponent. The spread of information on the network represents obvious fluctuation scaling, reflecting the characteristics that information transmission fluctuates over time.
基金supported by the National Natural Science Foundation of China(4106400141071294)+1 种基金Guangxi Key Laboratory of Spatial Information and Geomatics(GuiKeJi 1103108-06)the Natural Science Foundation of Guangxi(2012GXNSFAA053183)
文摘The estimation of Precipitable Water Vapor (PWV) derived from Global Positioning System (GPS) data at the IGS site WUHN is assessed by comparing with PWV obtained from radiosonde data (No.57494) in Wuhan. The applicability of Saastamoinen (SAAS), Hopfield and Black models used for estimating Zenith Hydrostatic Delay (ZHD) and Zenith Wet Delay (ZWD) and different models is verified in the estimation of GPS-derived PWV for the applied area. The experimental results demonstrated that : 1 ) the precision of PWV estimated from Black model used for calculating ZHD ( ZHDs ) is lower than that of SAAS ( ZHDsAAs ) model and Hopfield model (ZHDn) with the RMS of 4. 16 ram; 2) the RMS of PWV estimated from SAAS model used for calculating ZWD (SAAS) is 3.78 ram; 3 ) the well-known Bevis model gives similar accuracy compared with the site-specific models for Tm in terms of surface temperature ( Ts ) and surface pressure (Ps), which can reach the accuracy inside 1 mm in the GPS-derived PWV estimates.
基金jointly supported by grants from the National Natural Science Foundation(42071139)Gansu province Science Fund for Distinguished Young Scholars(21JR7RA066)the independent grants from the State Key Laboratory of Cryosphere Sciences(SKLCS-ZZ-2021)
文摘Soil organic carbon(SOC)and total nitrogen(TN)stocks are usually calculated with samples collected using core samplers.Although the calculation considers the effects of gravel in soil samples,other coarse fragments such as stones or boulders in soil may not be collected due to the restricted diameter of core samplers.This would cause an incorrect estimation of soil bulk density and ultimately SOC and TN stocks.In this study,we compared the relative volume of coarse fragment and bulk density of fine earth determined by large size soil sampler with three core samplers.We also investigated the uncertainties in estimation of SOC and TN stocks caused by this soil sampler procedure in three typical alpine grasslands on the northeast edge of the Qinghai-Tibetan Plateau(QTP),China.Results show that(1)the relative volume and size of coarse fragment collected by large size sampler were significantly(p<0.05)higher and larger than those of core samplers,while bulk density of fine earth,SOC and TN stocks show opposite patterns in all grassland types;(2)SOC and TN stocks determined by core samplers were 17%-45%and 18%-46%higher than larger size sampler for three typical alpine grasslands;and(3)bulk density of fine earth,SOC and TN stocks exponentially decreased with the increasing of coarse fragment content.We concluded that core sampler methods significantly underestimated the volume occupied by coarse fragment but overestimated SOC and TN stocks.Thus,corrections should be made to the results from core samplers using large size samplers on regions with gravel and stone-rich soils in future studies.
基金supported by the Guangxi Natural Science Foundation of China (2020GXNSFBA297145,Guike AD23026177)the Foundation of Guilin University of Technology(GUTQDJJ6616032)+3 种基金Guangxi Key Laboratory of Spatial Information and Geomatics (21-238-21-05)the National Natural Science Foundation of China (42064002,42004025,42074035,42204006)the Innovative Training Program Foundation (202210596015,202210596402)the Open Fund of Hubei Luojia Laboratory(gran 230100020,230100019)。
文摘The potential of monitoring the movement of typhoons using the precipitable water vapor(PWV) has been confirmed. However, monitoring the movement of typhoon is focused on PWV, making it difficult to describe the movement of a typhoon in detail minutely and resulting in insufficient accuracy. Hence,based on PWV and meteorological data, we propose an improved typhoon monitoring mode. First, the European Centre for Medium-Range Weather Forecasts Reanalysis 5-derived PWV(ERA5-PWV) and the Global Navigation Satellite System-derived PWV(GNSS-PWV) were compared with the reference radiosonde PWV(RS-PWV). Then, using the PWV and atmospheric parameters derived from ERA5, we discussed the anomalous variations of PWV, pressure(P), precipitation, and wind speed during different typhoons. Finally, we compiled a list of critical factors related to typhoon movement, PWV and P. We developed an improved multi-factor typhoon monitoring mode(IMTM) with different models(i.e.,IMTM-I and IMTM-II) in different cases with a higher density of GNSS observation or only Numerical Weather Prediction(NWP) data. The IMTM was evaluated through the reference movement speeds of HATO and Mangkhut from the China Meteorological Observatory Typhoon Network(CMOTN). The results show that the root mean square(RMS) of the IMTM-I is 1.26 km/h based on ERA5-P and ERA5-PWV,and the absolute bias values are mostly within 2 km/h. Compared with the models considering the single factor ERA5-P/ERA5-PWV, the RMS of the IMTM-I is improved by 26.3% and 38.5%, respectively. The IMTM-II model manifests a residual of only 0.35 km/h. Compared with the single-factor model based on GNSS-PWV/P, the residual of the IMTM-II model is reduced by 90.8% and 84.1%, respectively. These results propose that the typhoon movement monitoring approach combining PWV and P has evident advantages over the single-factor model and is expected to supplement traditional typhoon monitoring.
基金National Natural Science of China(No.42201463)Guangxi Natural Science Foundation(No.2023GXNSFBA026350)+1 种基金Special Fund of Guangxi Science and Technology Base and Talent(Nos.Guike AD22035158,Guike AD23026167)Guangxi Young and Middle-aged Teachers’Basic Scientific Research Ability Improvement Project(No.2023KY0056).
文摘The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pursuit of rich details not only adds complexity to entity models but also poses significant computational challenges for model visualization and 3D GIS.This paper introduces a novel method for deriving multi-LOD models,which can enhance the efficiency of spatial computing in complex 3D building models.Firstly,we extract multiple facades from a 3D building model(LoD3)and convert them into individual semantic facade models.Through the utilization of the developed facade layout graph,each semantic facade model is then transformed into a parametric model.Furthermore,we explore the specification of geometric and semantic details in building facades and define three different LODs for facades,offering a unique expression.Finally,an innovative heuristic method is introduced to simplify the parameterized facade.Through rigorous experimentation and evaluation,the effectiveness of the proposed parameterization methodology in capturing complex geometric details,semantic richness,and topological relationships of 3D building models is demonstrated.
基金supported by the National Natural Science Foundation of China(42304018)the National Natural Science Foundation of China(42330105,42064002,42074035)+3 种基金the Guangxi Natural Science Foundation of China(Guike AD23026177,2020GXNSFBA297145)the Foundation of Guilin University of Technology(GUTQDJJ6616032)Guangxi Key Laboratory of Spatial Information and Geomatics(21238-21-05)the Innovation Project of Guangxi Graduate Education(YCSW2023341)。
文摘The Zenith Hydrostatic Delay(ZHD)is essential for high-precision Global Navigation Satellite System(GNSS)and Very Long Baseline Interferometry(VLBI)data processing.Accurate estimation of ZHD relies on in situ atmospheric pressure,which is primarily variable in the vertical direction.Current atmospheric pressure is either site-specific or has limited spatial coverage,necessitating vertical corrections for broader applicability.This study introduces a model that uses a Gaussian function for the vertical correction of atmospheric pressure when in situ meteorological observations are unavailable.Validation with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis(ERA5)reveals an average Bias and RMS for the new model of 0.31 h Pa and 2.96 h Pa,respectively.This corresponds to improvements of 37.5%and 80.3%in terms of RMS compared to two commonly used models(T0and Tvmodels)that require in situ meteorological observations,respectively.Additional validation with radiosonde data shows an average Bias and RMS of 1.85 h Pa and 4.87 h Pa,corresponding to the improvement of 42.8%and 71.1%in RMS compared with T0and Tv models,respectively.These accuracies are sufficient for calculating ZHD to an accuracy of 1 mm by performing atmospheric pressure vertical correction.The new model can correct atmospheric pressure from meteorological stations or numerical weather forecasts to different heights of the troposphere.
基金supported by the National Natural Science Foundation of China (41174020, 41131067)the Fundamental Research Funds for the Central Universities (2014214020203)+1 种基金the open fund of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education (14-02-011)the open fund of Guangxi Key Laboratory of Spatial Information and Geomatics (14-045-24-17)
文摘Time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) changes over the Pearl River Basin (PRB) for the period 2003-Nov. 2014. TWS estimates from GRACE generally show good agreement with those from two hydrological models GLDAS and WGHM. But they show different capability of detecting significant TWS changes over the PRB. Among them, WGHM is likely to underestimate the seasonal variability of TWS, while GRACE detects long- term water depletions over the upper PRB as was done by hydrological models, and observes significant water increases around the Longtan Reservoir (LTR) due to water impoundment. The heavy drought in 2011 caused by the persistent precipitation deficit has resulted in extreme low surface runoff and water level of the LTR. Moreover, large variability of summer and autumn precipitation may easily trigger floods and droughts in the rainy season in the PRB, especially for summer, as a high correlation of 0.89 was found between precipitation and surface runoff. Generally, the PRB TWS was negatively correlated with El Nifio-Southern Oscillation (ENSO) events. However, the modulation of the Pacific Decadal Oscillation (PDO) may impact this relationship, and the significant TWS anomaly was likely to occur in the peak of PDO phase as they agree well in both of the magnitude and timing of peaks. This indicates that GRACE-based TWS could be a valuable parameter for studying climatic in- fluences in the PRB.
文摘Estimation of the zero-height geopotential value W_0^(LVD) for the CVD(China Vertical Datum) plays a fundamental role in the connection of traditional height reference systems into a global height system.Estimation the W_0^(LVD) of China is based on the computation of the mean geopotential offset between the value W_0= 62636856.0 m^2 s^(-2), selected as reference in this study, and the unknown geopotential value W_0^(LVD). This estimation is based on the combination of ellipsoidal heights, levelled heights(referring to the CVD), and some physical parameters, such as geopotential values, gravity values, and geoid undulations.The geoid undulations derived from the GGM(Global Geopotential Models). This combination is performed through three approaches: The first one is based on the theory of Molodensky, and the second one compares levelled heights and geopotential values derived from the GGMs, while the third one analyses the differences between GPS/Levelling and GGMs geoid undulations. The approaches are evaluated at 65 benchmarks(BMs) covered around Qingdao where the tide gauge is used to observe the local mean sea level of China. The results from three approaches are very similar. Furthermore, the W_0^(LVD)determined for the China local vertical datum was 62636852.9462 m^2 s^(-2), indicates a bias of about3.0538 m^2/s^(-2) compared to the conventional value of 62636856.0 m^2 s^(-2).
基金supported by the National Natural Science Foundations of China(Grant Nos.42030105,41721003,41804012,41631072,41874023)the Space Station Project(Grant No.2020-228)the Natural Science Foundation of Hubei Province of China(Grant No.2019CFB611)。
文摘The development of remote frequency transfer techniques,especially the appearance of optical clocks with unprecedented stability,has prompted geoscientists to study their applications in geodesy.Using remote frequency transfer technique,by frequency comparison of two optical clocks at two points P and Q connected by optical fibers,one can measure the signal’s frequency shift between them,and the geopotential difference between them can be determined based on the gravity frequency shift equation.Given the orthometric height of P,the orthometric height of Q can be determined.Since the present stability of the optical clock has achieved 1×10^(-18) or better and comparing the frequency transfer via optical fiber provides stability at 10^(-19) level,the optical clock network enables determining the orthometric height at centimeter-level.This study provides a formulation to determine the height diffe rence at one-centimeter level between two points on the ground based on the optical fiber frequency transfer technique.
文摘We used a questionnaire to obtain data about 664 university students’ amative behavior in a campus. Then we studied dissemination rules of university students’ amative behavior on campus social network. We found the amative behavior changes over time by focusing on the analysis of love group’s influence to single people and single group’s affected degree. Meanwhile, we compared the influence of single and multiple social relationships to the spread of amative behavior, and the result shows diversity of social relationships is a significant effect factor in spreading process.
基金supported by the National Natural Foundation of China(4106400141071294)+1 种基金the Natural Science Foundation of Guangxi(2012GXNSFAA053183)Guangxi Key Laboratory of Spatial Information and Geomatics(1103108-06)
文摘Tropospheric delay is a primary error source in earth observations and a variety of radio navigation technologies. In this paper, the relationship between zenith tropospheric delays and the elevation and longitude of stations is analyzed using the zenith tropospheric delay final products of International GNSS Service (IGS) stations from 2011. Two new models are proposed for estimating zenith tropospheric delays from regional CORS data without meteorological data. The proposed models are compared with the direct interpolation method and the remove-restore method using data from Guangxi CORS. The results show that the new models significantly improve the calculated precision. Finally, the root mean square (RMS) errors of the new models were used to estimate the surface precipitable water vapor (PWV) value at CORS station, which was determined to be less than 2 mm.
基金the National Natural Science Foundation of China(Grant Nos.41901409,41461089)the Guangxi Young and Middle-aged Teacher Basic Ability Improvement Project(Grant No.2018KY0247).
文摘Obtaining high-precision,long-term sequences of vegetation water content(VWC)is of great significance for assessing surface vegetation growth,soil moisture,and fire risk.In recent years,the global navigation satellite system-interferometric reflection(GNSS-IR)has become a new type of remote sensing technology with low cost,all-weather capability,and a high temporal resolution.It has been widely used in the fields of snow depth,sea level,soil moisture content,and vegetation water content.The normalized microwave reflectance index(NMRI)based on GNSS-IR technology has been proven to be effective in monitoring changes in VWC.This paper considers the advantages and disadvantages of remote sensing technology and GNSS-IR technology in estimating VWC.A point-surface fusion method of GNSS-IR and MODIS data based on the GA-BP neural network is proposed to improve the accuracy of VWC estimation.The vegetation index products(NDVI,GPP,LAI)and the NMRI that unified the temporal and spatial resolution were used as the input and output data of the training model,and the GA-BP neural network was used for training and modeling.Finally,a spatially continuous NMRI product was generated.Taking a particular area of the United States as a research object,experiments show that(1)a neural network can realize the effective fusion of GNSS-IR and MODIS products.By comparing the GA-BP neural network,BP neural network,and multiple linear regression(MLR),the three models fusion effect.The results show that the GA-BP neural network has the best modeling effect,and the r and RMSE between the model estimation result and the reference value are 0.778 and 0.0332,respectively;this network is followed by the BP neural network,in which the r and RMSE are 0.746 and 0.0465,respectively.MLR has the poorest effect,with r and RMSE values of 0.500 and 0.0516,respectively.(2)The spatiotem-poral variation in the 16 days/500 m resolution NMRI product obtained by GA-BP neural network fusion is consistent with that in the experimental area.Through the testing of GNSS stations that did not participate in the modeling,the r between the estimated value of the NMRI and the reference value is greater than 0.87,and the RMSE is less than 0.049.Therefore,the method proposed in this paper is optional and effective.The spatially continuous NMRI products obtained by fusion can reflect the changes in VWC in the experimental area more intuitively.
基金This work was supported by the National Natural Science Foundation of China under Grant No.41925006.
文摘Poverty alleviation is one of the greatest challenges faced by low-income and middle-income countries.China,which had the largest rural poverty-stricken population,has made tremendous efforts in alleviating poverty especially since the implementation of the targeted poverty alleviation(TPA)policy in 2014,and by 2020,all national poverty-stricken counties(NPCs)have been out of poverty.This study combines deep learning with multiple satellite datasets to estimate county-level economic develop-ment from 2008 to 2019 and assess the effect of the TPA policy for 592 national poverty-stricken counties(NPCs)at country,provincial and county levels.Per capita gross domestic product(GDP)is used to measure the affluence level.From 2014 through 2019,the 592 NPCs experience an average growth rate of per capita GDP at 7.6%±0.4%,higher than the average growth rate of 310 adjacent non-NPC counties(7.3%±0.4%)and of the whole country(6.3%).We also reveal 42 counties with weak growth recently and that the average affluence level of the NPCs in 2019 is still much lower than the national or provincial averages.The inexpensive,timely and accurate method proposed here can be applied to other low-income and middle-income countries for affluence assessment.
文摘In this paper, a new topological approach for studying an integer sequence constructed from Logistic mapping is proposed. By evenly segmenting [0,1]?into N non-overlapping subintervals which is marked as , representing the nodes identities, a network is constructed for analysis. Wherein the undirected edges symbolize their relation of adjacency in an integer sequence obtained from the Logistic mapping and the top integral function. By observation, we find that nodes’ degree changes with different values of??instead of the initial value—X0, and the degree distribution presents the characteristics of scale free network, presenting power law distribution. The results presented in this paper provide some insight into degree distribution of the network constructed from integer sequence that may help better understanding of the nature of Logistic mapping.
基金the National Natural Foundation of China(41704027,41664002,41864002)the Guangxi Natural Science Foundation of China(2017GXNSFBA198139,2017GXNSFDA198016,2018GXNSFAA281182,2018GXNSFAA281279)the“Ba Gui Scholars”program of the provincial government of Guangxi,and the Open Fund of Hunan Natural Resources Investigation and Monitoring Engineering Technology Research Center(No:2020-9).
文摘Precipitable Water Vapor(PWV),as an important indicator of atmospheric water vapor,can be derived from Global Navigation Satellite System(GNSS)observations with the advantages of high precision and all-weather capacity.GNSS-derived PWV with a high spatiotemporal resolution has become an important source of observations in mete-orology,particularly for severe weather conditions,for water vapor is not well sampled in the current meteorological observing systems.In this study,an empirical atmospheric weighted mean temperature(Tm)model for Guilin is estab-lished using the radiosonde data from 2012 to 2017.Then,the observations at 11 GNSS stations in Guilin are used to investigate the spatiotemporal features of GNSS-derived PWV under the heavy rainfalls from June to July 2017.The results show that the new Tm model in Guilin has better performance with the mean bias and Root Mean Square(RMS)of−0.51 and 2.12 K,respectively,compared with other widely used models.Moreover,the GNSS PWV estimates are validated with the data at Guilin radiosonde station.Good agreements are found between GNSS-derived PWV and radiosonde-derived PWV with the mean bias and RMS of−0.9 and 3.53 mm,respectively.Finally,an investigation on the spatiotemporal characteristics of GNSS PWV during heavy rainfalls in Guilin is performed.It is shown that variations of PWV retrieved from GNSS have a direct relationship with the in situ rainfall measurements,and the PWV increases sharply before the arrival of a heavy rainfall and decreases to a stable state after the cease of the rainfall.It also reveals the moisture variation in several regions of Guilin during a heavy rainfall,which is significant for the moni-toring of rainfalls and weather forecast.
基金the National Natural Science Foundation of China (Grant Nos. 41204034 and 11103068)the Opening Project of Shanghai Key Laboratory of Space Navigation and Position Techniques (Grant No. Y224353002)the Guangxi Key Laboratory of Spatial Information and Geomatics (Grant No. GKN1207115-20)
文摘A new strategy to realize precise absolute positioning for a single-frequency user is presented. In the presented strategy, the receiver clock and ambiguities are removed using the satelliteand epoch-differenced (SDED) algorithm. As a further development of the SDED algorithm, a regional augmentation network is used to generate the SDED atmospheric delays at the user. The weakened mathematic property due to the epoch-differenced operation is improved by adding the generated atmospheric delays and applying the robust estimation. To test the new approach, the 24-h data at 5 Continuous Operation Reference Station (CORS) stations in Shanghai is processed. The results show a more than 96% success rate, defined as the case where three directions achieve the desired positioning accuracy of 10 cm, when the observation is longer than 20 min. The 20-min static results show that the new method can reach an accuracy of 3.42, 4.76 and 9.26 cm in the North, East and Up directions, respectively. An experiment was carried out to assess the kinematic positioning. The results show that the kinematic positioning accuracy is 4.11, 5.31 and 4.05 cm in the north-south, east-west and height directions,respectively.